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OUTLINE 
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What is a “Smart City” ?

 Mobility as a resource contention game:

Selfish v Social optimality ⇒ PRICE OF ANARCHY (PoA)

Two takeaways (proposed research directions) from this talk:

1. Use “Big Data” to estimate the PoA

2. Use Connected Autonomous Vehicles (CAVs) + control 
to reduce/eliminate the PoA
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WHAT IS A “SMART CITY” ?

Christos G. Cassandras CISE - CODES Lab. - Boston University

“A city well performing in a forward-looking 
way in [economy, people, governance, 
mobility, environment, and living] built on the 
smart combination of endowments and 
activities of self-decisive, independent and 
aware citizens.”                Giffinger et al, 2007

Smart Sustainable Cities use information and 
communication technologies (ICT) to be more 
intelligent and efficient in the use of 
resources, resulting in cost and energy 
savings, improved service delivery and quality 
of life, and reduced environmental footprint--
all supporting innovation and the low-carbon 
economy.                                      Cohen, 2014Hitachi's vision for the Smart Sustainable 

City seeks to achieve concern for the global 
environment and lifestyle safety and 
convenience through the coordination of 
infrastructure. Smart Sustainable Cities 
realized through the coordination of 
infrastructures consist of two infrastructure 
layers that support consumers' lifestyles 
together with the urban management 
infrastructure that links these together using 
IT Hitachi Web, 2014

“We believe a city to be smart when 
investments in human and social capital and 
traditional (transport) and modern (ICT) 
communication infrastructure fuel sustainable 
economic growth and a high quality of life, with 
a wise management of natural resources, 
through participatory governance.” 

Meijer and Bolívar, 2013



WHAT IS A “SMART CITY” ?

Christos G. Cassandras CISE - CODES Lab. - Boston University

Smart Sustainable Cities use information and 
communication technologies (ICT) to be more 
intelligent and efficient in the use of resources, 
resulting in cost and energy savings, improved 
service delivery and quality of life, and reduced 
environmental footprint--all supporting innovation 
and the low-carbon economy.                                      
Cohen, 2014



WHAT IS A “SMART CITY” ?
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CREDIT:  Fernando Livschitz
http://www.fastcodesign.com/3035870/filmmaker-creates-worlds-most-terrifying-traffic-intersection



COLLECTING DATA IS NOT “SMART”

- JUST A NECESSARY STEP TO
BEING “SMART”

PROCESSING DATA TO MAKE 
GOOD DECISIONS IS “SMART”

INFO

INFOACTION

Christos G. Cassandras CISE - CODES Lab. - Boston University

WHAT IS REALLY “SMART” ?



TRAFFIC CONTROL

The BU Bridge mess, Boston, MA (simulation using VISSIM)



… EVEN IF WE KNOW THE ACHIEVABLE OPTIMUM
IN A TRAFFIC NETWORK ???

Christos G. Cassandras CISE - CODES Lab. - Boston University

WHY CAN’T WE IMPROVE TRAFFIC…

Because:

• Not enough controls (traffic lights, tolls, speed fines)
→ No chance to unleash the power of feedback!

• Not knowing other drivers’ behavior leads to poor decisions 
(a simple game-theoretic fact)
→ Drivers seek individual (selfish) optimum,

not system-wide (social) optimum
PRICE OF ANARCHY

(POA)
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GAME-CHANGING OPPORTUNITY:
CONNECTED AUTONOMOUS VEHICLES (CAVs) 

FROM (SELFISH) “DRIVER OPTIMAL” 
TO (SOCIAL) “SYSTEM OPTIMAL” 
TRAFFIC CONTROL

NO TRAFFIC LIGHTS, NEVER STOP…

THE “INTERNET OF CARS”
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THE CASE FOR “SELF-DRIVING” CARS

 Humans are bad drivers
(94% of accidents are due to human error)

 Computers do not get distracted (humans do)

 Computers can process vast amounts of data (humans cannot)

 Computers can maintain steady cruising speeds
(leading to improved energy efficiency)

 Computers react quickly (humans do not)

 Computer can make fast and accurate driving adjustments

 Computers do not blink, do not drink, and do not sleep
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OBJECTIONS TO “SELF-DRIVING” CARS

 Legal issues: who is to blame for a fault ?

 How to integrate with normal cars ?

 Security and Privacy (due to connectivity)

 Accidents may be rare, but when they occur they are likely
to be serious

 Technical challenges…
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BEFORE (traffic lights)

One of the worst-designed double intersections ever… 
(BU Bridge – Commonwealth Ave, Boston, MA)

HOW TO QUANTIFY BENEFITS OF
AUTOMATED MOBILITY ?

AFTER (no traffic lights, CAVs)
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HOW TO MEASURE THE PRICE OF ANARCHY ?

LINK a FLOW xa

COST FUNCTION ta (xa)

Under USER-CENTRIC (selfish) control:                 is the equilibrium flow
Under SYSTEM-CENTRIC (social) control:             is the equilibrium flow

user
ax
social
ax

Eastern Mass.
13,000+ road segments
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HOW TO MEASURE THE PRICE OF ANARCHY ?
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1. Measure/estimate the PoA ?

Two takeaways (proposed research directions) from this talk:

BEFORE

AFTER

2. Reduce/eliminate the PoA ?

Inverse Optimization

Optimal Control Framework



ESTIMATING THE
PRICE OF ANARCHY



CHALLENGES AS THINGS NOW STAND…

 We don’t know user COST FUNCTIONS

 We don’t know  user ORIGIN-DESTINATION pairs (no DEMAND model)

We can’t  solve the SYSTEM OPTIMALITY problem

We can’t  exploit CAVs We can’t assess the value of investing 
in CAV-based technologies, since we 
can’t evaluate the PRICE OF ANARCHY

BUT WE DO HAVE PLENTY OF DATA….

Christos G. Cassandras CISE - CODES Lab. - Boston University



THE BIG DATA SET
Data Set provided by City of Boston 
and Mass. Planning Organization

Average and real-time speed data in 
Eastern Mass. for every minute of 2012

• 13000+ road segments
(avg. distance 0.7 mile)

• 50+ GB of data

Lowest Speed (6-12 mile/hr)

Highest Speed (60-70 mile/hr)

Christos G. Cassandras CISE - CODES Lab. - Boston University



INVERSE OPTIMIZATION – KEY IDEA
BACKWARD optimization:

- Data reveal a (selfish) equilibrium (Wardrop/Nash equilibrium)
- What are the (virtual) cost functions which best fit the data that lead to 

this equilibrium?

FORWARD optimization:

- Use these cost functions to find (social) optimal traffic flows

- Estimate the PRICE OF ANARCHY

Christos G. Cassandras CISE - CODES Lab. - Boston University



INVERSE OPTIMIZATION PROBLEM
Optimal Traffic Flow allocation as a Variational Inequality (VI) problem:

Unknown
cost function

Assumption 1: t(∙) is strongly monotone and continuously differentiable.
is nonempty and contains an interior point (Slater’s condition) 

THEOREM: Suppose Assumption 1 holds. Then, there exists a 
Wardrop (Nash) equilibrium of the single-class transportation 
network which is the unique solution of the VI problem.

Christos G. Cassandras CISE - CODES Lab. - Boston University

Optimal Traffic Flows

Patriksson, 2015



INVERSE OPTIMIZATION PROBLEM

Inverse Variational inequality problem

Christos G. Cassandras CISE - CODES Lab. - Boston University

Cost functions
that fit data

Given Data

Solve for cost functions t(∙) in a Reproducing Kernel Hilbert Space



INVERSE OPTIMIZATION PROBLEM
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Data reconciliation Generalization



INVERSE OPTIMIZATION PROBLEM
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O-D MATRIX ESTIMATION

That’s a separate challenging problem!

We solve it using Generalized Least Squares (GLS) methods

Christos G. Cassandras CISE - CODES Lab. - Boston University

Zhang et al, IFAC 2017 – WeP13.1

Typically,
hundreds/thousands
of O-D pairs…



FORWARD OPTIMIZATION PROBLEM
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Nonlinear Programming Problem (NLP):

∑
∈

∈
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Optimal
System-centric (social) 
Flows x*

Feasible Flows
from O-D demand matrix

Estimated Cost Functions



COST FUNCTION ESTIMATES: BOSTON AREA 2012

Christos G. Cassandras CODES Lab. - Boston University



PRICE OF ANARCHY – BOSTON AREA 2012

Link flows:
Social-opt. (green) 
User-opt. (red)

Christos G. Cassandras CISE - CODES Lab. - Boston University



PRICE OF ANARCHY – BOSTON AREA 2012

INTERPRETATION:
We can improve 
traffic by more than 
100% if we can 
direct vehicles
(e.g., using CAVs)

Christos G. Cassandras CISE - CODES Lab. - Boston University

Zhang et al, IEEE CDC 2016
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NEXT STEPS…
Goal 1 accomplished:

PoA is HIGH  
⇒ Evidence to support investing in CAVs to achieve

System-Centric (Social) Optimality 

⇒ How do we do it ?

Christos G. Cassandras CISE - CODES Lab. - Boston University



NEXT STEPS - ROUTING

Relatively easy: 

 Recommendations/Suggestions (e.g., through apps)

 Incentives, Pricing Schemes

 Automated Enforcement
(CAV selects route, driver can override) 

Christos G. Cassandras CISE - CODES Lab. - Boston University



NEXT STEPS – TRAFFIC NETWORK BOTTLENECKS

Need to automatically control velocity/acceleration in urban 
environments:

 Merging points

 Intersections

Christos G. Cassandras CISE - CODES Lab. - Boston University



A DECENTRALIZED
OPTIMAL CONTROL

FRAMEWORK
FOR CAVs

NO TRAFFIC LIGHTS, NEVER STOP…



VEHICLE COORDINATION

Christos G. Cassandras CISE - CODES Lab. - Boston University

 Reservation schemes: 
Dresner and Stone (2004), Huang et al (2012), Zhang et al (2013),
Kim and Kumar (2014), Zhu and Ukkusuri(2015)

 Control and Optimization: 
Levine and Athans (1966), Varaiya (1993), Lu and Hedrick (2000),
Kotsialos and Papageorgiou (2004), Li and Wang (2006), 
Lee and Park (2013), Kamal et al (2013), Pasquale et al (2015)

 Queueing models:  Miculescu and Karaman (2014)

- Centralized approaches:

 Heuristics: Milanes et al (2011), Onieva et al (2012)
 Critical set: Hafner et al (2013), Colombo and Del Vecchio (2014)
 Optimization: Makarem et al (2013), Campos et al (2014)

- Decentralized approaches:



RELATED RESEARCH 
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 KTH Royal Inst. of Tech., Sweden (K. Johansson et al)

 GIPSA-Lab, Grenoble, France (C. Canudas de Wit)

 U. of Genova, U. of Pavia (S. Sacone, S. Siri, A. Ferrara et al)

 Nanyang Technological University, Singapore (R. Su et al)

 Tsinghua U., China (Y. Zhang)

 MIT (A. Annaswamy, S. Karaman et al)

 UC Berkeley (A. Bayen et al)

 U. Michigan/Mcity (H. Peng et al)

 …
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NO TRAFFIC LIGHTS - CAVs
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NO TRAFFIC LIGHTS - CAVs
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NO TRAFFIC LIGHTS - CAVs
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THE MODEL

CAV dynamics:
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THE MODEL

Control Zone queue:
)}(,,1{)( tNt =N

Enters CZ Exits MZ

Enters MZ at time m
it

Order constraint:

1 ),(   ,1 >∈≥ − ititt m
i

m
i N

Not necessarily FIFO 
– can change order at CAV 
arrival events
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THE MODEL

Depending on physical location of i
relative to i-1,

i-1 belongs to one of the four subsets:

MZat collision  no               
direction, opposite , as road same :)( 4. itOi

lanesdifferent               
, asdirection  same road, same :)( 1. itRi

itLi  as lane same road, same :)( 2.

MZat collision  possible              
, from roaddifferent  :)( 3. itCi
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THE MODEL - ASSUMPTIONS

 No turn or lane change

 Constant speed in MZ:
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f
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SAFETY CONSTRAINTS

],[   ,)()()( 0 f
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 Rear end safety constraint:

 Lateral collision avoidance constraint:
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ENERGY MINIMIZATION PROBLEM: E-MIN

Each CAV minimizes ENERGY COST FUNCTIONAL
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)(
2
1)),((min

0

2
)(

dttuttuJ
m
i

ii

t

t
i

m
iii

tu ∫=

1. CAV dynamics
2. Speed/Acceleration constraints
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4. Rear-end safety constraint
5. Lateral collision avoidance constraint
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ENERGY MINIMIZATION PROBLEM: E-MIN

:subject to  )({ iii Utu ∈=A

1. CAV dynamics
2. Speed/Acceleration constraints
3. Order constraints:
4. Rear-end safety constraint
5. Lateral collision avoidance constraint
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Feasible control set for E-MIN:
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HOW IS ith MERGING TIME DETERMINED ?

Maximize THROUGHPUT – Problem TP-MAX
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HOW IS ith MERGING TIME DETERMINED ?

THEOREM: 
The solution of TP-MAX is recursively determined by each i:

where:
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HOW IS ith MERGING TIME DETERMINED ?

TP-MAX *m
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... :subject to       
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DECENTRALIZED FRAMEWORK

CAV INFORMATION SET upon 
entering a CZ:

{ }*),(,,),(),()( m
iiiiii ttsQwtvtptY =

w :  unique CAV ID
Qi : one of the four sets Ri, Li, Ci, Oi

:  solution of TP-MAX obtained by i*m
it

 INFORMATION SET available to i and COORDINATOR upon entering CZ
 Communication needed (e.g., DSRC)



Christos G. Cassandras CISE - CODES Lab. - Boston University

DECENTRALIZED PROBLEM FOR EACH CAV i
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NOT INCLUDED: 
 Lateral collision avoidance constraint

 Rear-end safety constraint

Implicitly handled by     *m
it

Only guaranteed at       *m
it
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SAFETY CONSTRAINT NOT GUARANTEED…

Safety constraint violation by CAV 3 when δ = 10.
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DECENTRALIZED PROBLEM SOLUTION

When constraints are not active:
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DECENTRALIZED PROBLEM SOLUTION

When one or more constraints are active:

Solution is of the same form and still analytically tractable

Malikopoulos, Cassandras, and Zhang, 2017
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FEASIBILITY ANALYSIS

Under what conditions can 
we guarantee safety 
throughout the CZ ?

THEOREM: 
There exists a nonempty feasible region of initial conditions 
for each i such that, under the decentralized optimal control,

holds for all 
given initial conditions for k

),( 00
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ii ttt∈

000 ,,, k
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Zhang, Cassandras, and Malikopoulos, ACC 2017
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FEASIBILITY ANALYSIS

THEOREM: 
There exists a nonempty feasible region of initial conditions 
for each i such that, under the decentralized optimal control,

holds for all 
given initial conditions for k
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FEASIBILITY ENFORCEMENT ZONE 

What is the length of the Feasibility Enforcement Zone (FEZ) ?
Worst case analysis:
When CAV i enters FEZ with vmax and needs to reach CZ with vmin

0 s.t.on accelerati min. :   ,
2 min

2
max

2
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WHO NEEDS TRAFFIC LIGHTS?

With traffic lights With decentralized control of CAVs

One of the worst-designed double intersections ever… 
(BU Bridge – Commonwealth Ave, Boston, MA)



Christos G. Cassandras CISE - CODES Lab. - Boston University

EXAMPLE

WIN-WIN ! + fewer harmful  
emissions
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TESTING AUTOMATED MOBILITY

BU Robotics Lab

Mcity test bed,
U. Michigan
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OPTIMAL CONTROL FRAMEWORK – ISSUES

 Computational complexity for on-line implementation

 Incorporating turns and extending to multiple intersections

 Alternative formulations: travel time + fuel efficiency

 How about pedestrians and non-CAV traffic?



CONCLUSIONS 

Christos G. Cassandras CODES Lab. - Boston University

Two takeaways (proposed research directions) from this talk:

1. Use real data to infer user behavior and solve system-
centric problems, estimate Price of Anarchy (PoA) 

2. Use Connected Autonomous Vehicles (CAVs) + control 
to reduce/eliminate the PoA

Interesting OPEN QUESTIONS regarding Automated Mobility:
 What fraction of CAVs does it take to realize benefits ?
 How do we integrate CAVs with pedestrians, bicycles, etc ?
 Is Shared Mobility On-Demand the long-term answer ?

(typical car utilization is 4%...)
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