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There are THREE FUNDAMENTAL LIMITS that 
constrain the design, control, and 
management of COMPLEX systems

But we can often (not always) get 
around these limits…

 …by exploiting the INTERNAL STRUCTURE 
of a system (avoid “brute-force” analysis)

 …by asking the “RIGHT” QUESTIONS 
(get the most “bang for the buck”)



COMPLEXITY 
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STOCHASTIC
COMPLEXITY

NUMERICAL
COMPLEXITY

+

PHYSICAL
COMPLEXITY

OPERATIONAL
COMPLEXITY
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THREE FUNDAMENTAL COMPLEXITY LIMITS

NO-FREE-LUNCH
LIMIT

one order increase in estimation ACCURACY  
requires

two orders increase in LEARNING EFFORT  
(e.g., simulation length T,  amount of data N,

uncertainty decreases as 1/√N)

STRATEGY
SPACE

= DECISION
SPACE

INFO.
SPACE

Tradeoff between
GENERALITY and EFFICIENCY

of an algorithm
[Wolpert and Macready, IEEE TEC, 1997]
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THREE FUNDAMENTAL COMPLEXITY LIMITS

NO-FREE-LUNCH
LIMIT

Effect is
MULTIPLICATIVE!



EXPLOITING STRUCTURE
TO LEARN

COMPLEX SYSTEM
BEHAVIOR FAST
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• Discrete Event Dynamic Systems
• Perturbation Analysis Theory

FAST
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THE           PROBLEM (circa 1978)

What is the best way to distribute BUFFER capacity
in a manufacturing transfer line?

PARTS
IN

PRODUCTS
OUT

BUFFERS

SERIAL OPERATIONS

Ho, Eyler, Chien, 
Cassandras,
Cao,…
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THE           PROBLEM (circa 1978)

PARTS
IN

PRODUCTS
0UT

BUFFERS

SLOW… PRETTY FAST…

What is the best way to distribute BUFFER capacity
in a manufacturing transfer line?
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THE           PROBLEM (circa 1978)

Complexity of this buffer allocation process
(K buffers, N stages) 







 −+
K
NK 1

Example:  K = 24, N = 6 → 118,755 possible allocations
• “Brute Force” trial-and-error: test each allocation for about a week to 

get statistically meaningful results 
(that’s if the manager allows you to mess with the system…) 

→ about 2300 years…

• Suppose you can reduce to only 1000 “promising” allocations: 
→ about 19 years…

• Using a simulated transfer line, about 3 minutes per trial (1980s 
computing technology…) 

→ about 250 days…



THROUGHPUT

Manufacturing system with N sequential operations:

… … ……
DELAY

λ(t)

THROUGHPUT 
increases
(GOOD)

INCREASE λ(t)

average DELAY 
increases

(BAD)
THROUGHPUT

AV. DELAY
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WHY IS THIS PROBLEM IMPORTANT ?

Christos G. Cassandras CODES Lab. - Boston University

SWEET SPOT
CONTROLLED BY
BUFFER ALLOCATION



Christos G. Cassandras CODES Lab. - Boston University

TWO KEY OBSERVATIONS

1. This is a dynamic system.
But it’s not like the usual TIME-DRIVEN ones, i.e., described by
differential equations

),,( tuxf
dt
dx

=

Need a NEW modeling framework for these EVENT-DRIVEN systems
→ DISCRETE EVENT DYNAMIC SYSTEMS

2.   You don’t need brute-force trial-and-error for each allocation…
Once the system dynamics are understood, you can predict
what happens by changing allocations
(adding, removing, moving buffers)

→ PERTURBATION ANALYSIS THEORY
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ARRIVAL 1
ARRIVAL 2
ARRIVAL 3

A B C

SYSTEM DYNAMICS: 
HOW ONE COMPONENT OF THE SYSTEM
AFFECTS OTHER COMPONENTS

THE           PROBLEM: SYSTEM DYNAMICS
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DEPARTURE 1 FROM A

THE           PROBLEM: SYSTEM DYNAMICS
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DEPARTURE 1 FROM B

ARRIVAL 4 IDLING

THE           PROBLEM: SYSTEM DYNAMICS
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DEPARTURE 2 FROM A

THE           PROBLEM: SYSTEM DYNAMICS
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DEPARTURE 2 FROM B
DEPARTURE 3 FROM A

THE           PROBLEM: SYSTEM DYNAMICS
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DEPARTURE 3 FROM B

BLOCKING
ARRIVAL 5

WHAT IF THIS
HAD BEEN ADDED?

RECORD BLOCK START TIME: DB(3)

PERTURBATION
ANALYSIS

THE           PROBLEM: SYSTEM DYNAMICS
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DEPARTURE 4 FROM A

THE           PROBLEM: SYSTEM DYNAMICS
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DEPARTURE 1 FROM C

BLOCKING ENDS

RECORD BLOCK END TIME: Dc(1)
PART SYSTEM DELAY WOULD HAVE 
BEEN REDUCED BY:  Dc(1) - DB(3)

PERTURBATION
ANALYSIS

THE           PROBLEM: SYSTEM DYNAMICS



SYSTEMDesigns, Options,
Policies, Parameters

Performance
Measures

CONVENTIONAL TRIAL-AND-ERROR ANALYSIS

• Repeatedly change parameters/operating policies
• Test different conditions
• Answer multiple WHAT IF questions

LEARNING BY TRIAL AND ERROR

Christos G. Cassandras CODES Lab. - Boston University

N “What-If” questions ⇒ N+1 trials !



ANSWERS  TO  MULTIPLE  “WHAT IF”  QUESTIONS 
AUTOMATICALLY  PROVIDED FROM A SINGLE TRIAL 

SYSTEM Performance
Measures
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LEARNING WITH PERTURBATION ANALYSIS

Designs, Options,
Policies, Parameters

WHAT IF…
• Parameter p1 = a were replaced by p1 = b
• Design option 1 were replaced by option 2

••

Performance Measures
under all WHAT IF Questions

PERTURBATION
ANALYSIS



1

2
Observed

with
K = 2 buffers

1

2 Perturbed
with

K = 1 buffers

[THOUGHT EXPERIMENT]
∆x = 0 ∆x = -1 ∆x = 0

x(t+) = 0
⇒ ∆x = 0

BUFFER MACHINE

Part
Arrivals

Part
Departures

x(t): SYSTEM CONTENT

x(t) 

LEARNING THROUGH PERTURBATION ANALYSIS
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1 2 4

1 2 3 4

x(t+) = 2
⇒ ∆x = -1



EVENT-DRIVEN SYSTEMS
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The mathematical tools we need to play these 

“WHAT-IF” games are not given by the usual 

differential equations and calculus…

These EVENT-DRIVEN SYSTEMS require a new 

set of models and methodologies



DIFFERENTIAL EQUATIONS v MAX-PLUS CALCULUS
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),,( tuxf
dt
dx

=

TIME-DRIVEN
SYSTEMS

[time: independent variable]

EVENT-DRIVEN
SYSTEMS

[time: state variable]
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EVENT TIME
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DISCRETE EVENT DYNAMIC SYSTEMS (DEDS)
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HYBRID AUTOMATA



DERIVATIVE ESTIMATION:
INFINITESIMAL PERTURBATION ANALYSIS (IPA)

Christos G. Cassandras CISE - CODES Lab. - Boston University

“Brute Force” Derivative Estimation:

θ )(ˆ θJSYSTEM

SYSTEMθ+∆θ ( )J θ θ+ ∆
]⇒







=
+ −dJ

d
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θ θ θ

θ

( ) ( )∆
∆

DRAWBACKS: • Intrusive:  actively introduce perturbation ∆θ
• Computational cost:    2 observation processes

[ (N+1) for N-dim θ ]
• Inherently inaccurate: ∆θ large ⇒ poor derivative approx.

∆θ small ⇒ numerical instability

Infinitesimal Perturbation Analysis 
(IPA):

θ ( )J θSYSTEM

IPA
estd

dJ






θ
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AN APPLICATION:

ELEVATOR DISPATCHING

Christos G. Cassandras CODES Lab. - Boston University



PASSENGER
QUEUES

COMPLEXITY: 
- Huge state space
- Movement constraints
- Incomplete state info.,

etc.

~1050
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ELEVATOR DISPATCHING
Elevator systems…



3 elevators available at lobby… 

Each person takes one and goes

HOW NOT TO CONTROL
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Long waiting results…

HOW NOT TO CONTROL
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Force  only 1 of the 3 elevators to be available 

A BETTER WAY TO CONTROL
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CONTROLLER (Threshold-based):

THRESHOLD depends on • passenger arrival rate
• car service rate

• Load one car at a time 
• Dispatch this car when 

number of passengers inside car ≥ THRESHOLD

ELEVATOR DISPATCHING

Christos G. Cassandras CODES Lab. - Boston University

Pepyne and Cassandras, IEEE Trans. on Control Systems Tech., 1998.

THIS IS IN FACT OPTIMAL!



Variation in λ over 12
5-min. intervals for
1 hour uppeak traffic
(courtesy B. Powell, OTIS Elevator)
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PROBLEM: 
• How to determine 12 thresholds, one for each 

5 min. interval of fixed traffic rate?
• How to automatically adjust them on line? 

ELEVATOR DISPATCHING
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 Optimize thresholds

PERTURBATION ANALYSIS APPROACH:

 Choose any set of 12 thresholds 
(one for each 5-min. interval)

 Observe system under given thresholds

 Apply Perturbation Analysis to “learn” effect of all
other feasible thresholds
(i.e., infer performance under hypothetical threshold values)

ELEVATOR DISPATCHING
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Threshold = 1 
Threshold = 10
Threshold = 20
CEDA          
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CEDA: 
Concurrent
Estimation
Dispatching
Algorithm

ELEVATOR DISPATCHING
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Uncontrolled

Artificial Intelligence (AI) methods : over 1 year… 

How fast did the CEDA learn
optimal thresholds? Approximately 5 real days



DECOMPOSITION
AND

ABSTRACTION

Christos G. Cassandras CODES Lab. - Boston University



Christos G. Cassandras CODES Lab. - Boston University

MORE COMPLEXLESS COMPLEX

SYSTEM
COMPONENT 1

DECOMPOSITIONLESS
COMPLEX

COMPLEX
SYSTEM

What exactly
does this mean?

SYSTEM
COMPONENT 2

SYSTEM
COMPONENT N

…
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ABSTRACTION
(AGGREGATION)LESS COMPLEX

MORE COMPLEXLESS COMPLEX

ABSTRACTED
SYSTEM

ZOOM OUT

COMPLEX
SYSTEM



TOO CLOSE…
too much

undesirable
detail

TOO FAR…
model not

detailed enough

WHAT IS THE RIGHT ABSTRACTION LEVEL ? 
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JUST RIGHT…
good model CREDIT: W.B. Gong



ABSTRACTION
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A SECOND IN THE LIFE OF AN INTERNET NODE…
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PACKETS IN

PACKETS OUT

STATE: NODE CONTENT (number of packets)

… a pure DISCRETE EVENT SYSTEM



ABSTRACTION OF A DISCRETE-EVENT SYSTEM
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DISCRETE-EVENT
SYSTEM



STOCHASTIC
FLOW MODEL (SFM)

ABSTRACTION OF A DISCRETE-EVENT SYSTEM

Christos G. Cassandras CODES Lab. - Boston University

EVENTSTIME-DRIVEN
FLOW RATE DYNAMICS

DISCRETE-EVENT
SYSTEM



WHY SFM?
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 If the RIGHT QUESTIONS are asked, 
the loss of detailed information becomes insignificant…

 “Lower resolution” model of “real” system intended to 
capture  just enough info. on system dynamics

 Aggregates many events into simple continuous dynamics, 
preserves only events that cause drastic change
⇒ computationally efficient

(e.g., orders of magnitude faster simulation)



K

x(t)LOSS

ARRIVAL
PROCESS

AN OPTIMIZATION PROBLEM
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PROBLEM: Determine Κ to minimize  [Q(K) + R·L(K)]

L(K): Loss Rate

Q(K): Mean Content

SURROGATE PROBLEM: Determine θ to minimize  [QSFM(θ) + R·LSFM(θ)]

“REAL” SYSTEM

θ

x(t)
γ(t)

β(t)
α(t)

RANDOM 
PROCESS

RANDOM 
PROCESS

SFM
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SFM

Opt. Algo

“Real” System

SFM

Optim. Algorithm
using SFM-based 
information
on REAL system !

AN OPTIMIZATION PROBLEM

Christos G. Cassandras CODES Lab. - Boston University

Cassandras, Wardi, Melamed, Sun, and Panayiotou, IEEE Trans. on Automatic Control, 2002.

COST



THE “RIGHT QUESTION”…
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Can the ABSTRACTION model be used to predict the real 
system’s behavior?

Can the ABSTRACTION model be used to control or 
optimize the real system’s behavior ?

Maybe, but that’s too much to hope for.
BAD question…

Often yes, and sometimes this can be proved.
GOOD question…



DECOMPOSITION

Christos G. Cassandras CODES Lab. - Boston University



CYBER-PHYSICAL SYSTEMS
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INTERNET

CYBER

PHYSICAL

Data collection:
relatively easy…

Control:
a challenge…



DISTRIBUTED COOPERATIVE CONTROL
AND OPTIMIZATION
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…

N system components 
(processors, agents, vehicles, sensors), 
one common objective:
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MOTIVATIONAL PROBLEM: COVERAGE CONTROL

Deploy a SENSOR NETWORK to maximize “event” detection probability 
– unknown event locations
– event sources may be mobile
– sensors may be mobile 

Perceived event density (data sources) over given region (mission space)
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• Meguerdichian et al, IEEE INFOCOM, 2001
• Cortes et al, IEEE Trans. on Robotics and 

Automation, 2004
• Cassandras and Li, Eur. J. of Control, 2005
• Ganguli et al, American Control Conf., 2006 
• Hussein and Stipanovic, American Control 

Conf., 2007
• Hokayem et al, American Control Conf., 2007



OPTIMAL COVERAGE IN A MAZE
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http://www.bu.edu/codes/research/distributed-control/



SYNCHRONIZED (TIME-DRIVEN) COOPERATION
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1

2

3

COMMUNICATE + UPDATE

Drawbacks:
 Excessive communication (critical in wireless settings!)
 Faster nodes have to wait for slower ones
 Clock synchronization infeasible
 Bandwidth limitations
 Security risks



ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION
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2

3

UPDATE
COMMUNICATE

 UPDATE at i : locally determined, arbitrary (possibly periodic)
 COMMUNICATE from i :   only when absolutely necessary

1



EVENT-DRIVEN COMMUNICATION
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When should a network node communicate with others?

What is the minimum amount of communication 

required to guarantee a network objective is 

met?

Communication is expensive, insecure,
and kills our precious batteries…
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ii

j

)(txi

δi

WHEN SHOULD A NODE COMMUNICATE?

Node i communicates its state to node j only when it detects that 
its true state xi(t) deviates from  j’ estimate of it
so that for a given g and δi

)(tx j
i

( ) i
j

ii txtxg δ≥)(),(

⇒ Event-Driven
Communication

and Control

Theorem formally proving optimality guaranteed
under this limited communication scheme
(even with delays…) Zhong and Cassandras, IEEE Trans. on Automatic Control, 2010



TIME-DRIVEN v EVENT-DRIVEN
OPTIMAL COVERAGE PERFORMANCE
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SYNCHRONOUS v ASYNCHRONOUS:
No. of communication events
for a deployment problem with obstacles

SYNCHRONOUS v ASYNCHRONOUS:
Achieving optimality
in a problem with obstacles

Energy savings + Extended lifetime
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DEMO: COVERAGE + EVENT DETECTION WITH 
EVENT-DRIVEN COOPERATION



CODES LAB TEST BEDS

SMARTS Kickoff MeetingChristos G. Cassandras CISE - CODES Lab. - Boston University
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WHAT LIES
AHEAD…



Decision Making

Data collection

Energy
Management

Safety

Security

Control and
Optimization

Actions

Information
Processing

Privacy
SENSOR

NETWORKS

BIG
DATA

“SMART CITIES” AS CYBER-PHYSICAL SYSTEMS

Christos G. Cassandras CISE - CODES Lab. - Boston University

(in operation at BU…)

(tested in Boston…)



TIME-DRIVEN v EVENT-DRIVEN CONTROL 
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REFERENCE
PLANTCONTROLLER

INPUT

-

+

SENSOR
MEASURED
OUTPUT

OUTPUTERROR

REFERENCE
PLANTCONTROLLER

INPUT

-

+

SENSOR
MEASURED
OUTPUT

OUTPUTERROR

EVENT:
g(STATE) ≤ 0

EVENT-DRIVEN CONTROL:  Act only when needed (or on TIMEOUT) - not based on a clock



COMPLEXITY MADE SIMPLE AT  A SMALL PRICE
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…in SMART CITIES … Smart Parking, Traffic Light Control
Street Bump

 …in CANCER TREATMENT ?????

 …in SENSOR NETWORKS … abstracting battery models for 
optimal power management

 …in MULTI-AGENT SYSTEMS … UAVs, Robotics

Cancer as a “disease of stages”
i.e., a Discrete Event System!



Y.C. (Larry) Ho
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