CONTROL AND OPTIMIZATION IN CYBERPHYSICAL SYSTEMS: FROM SENSOR NETWORKS TO "SMART PARKING" APPS

# C. G. Cassandras

Division of Systems Engineering and Dept. of Electrical and Computer Engineering and Center for Information and Systems Engineering Boston University





#### **CYBER-PHYSICAL SYSTEMS**



Christos G. Cassandras

CISE - CODES Lab. - Boston University

# SENSOR NETWORK AS A CONTROL SYSTEM

## What is the function of a SENSOR NETWORK?

- 1. Seek and detect "Data Sources" (or "Targets")
- 2. Once a Data Source is detected, collect data from it, track it if mobile

3. Continue to seek data sources while collecting data from detected sources

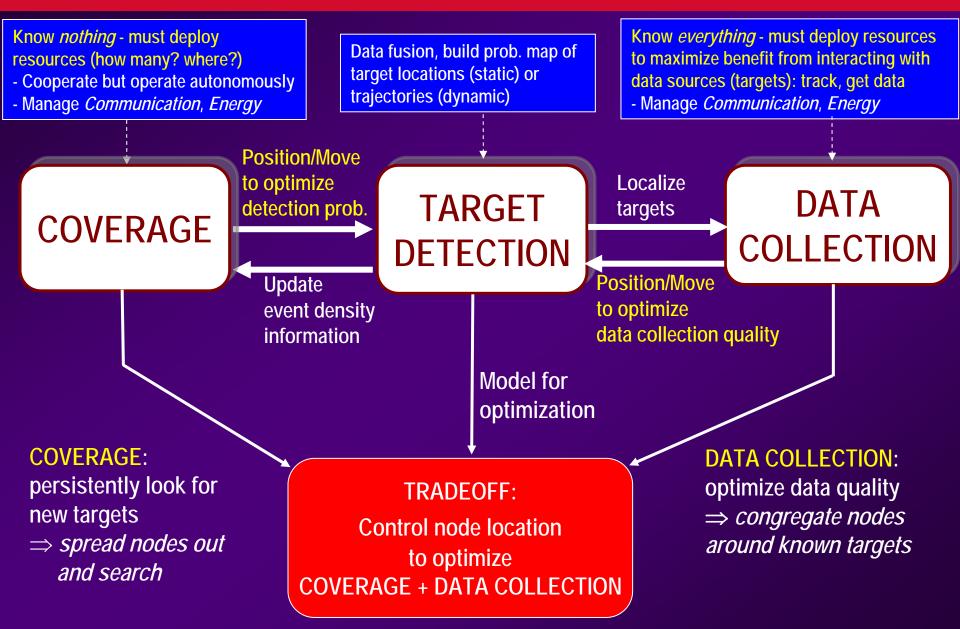
Christos G. Cassandras

# OUTLINE

- Sensor Networks as Control Systems
- No knowledge of mission space:
   Coverage control, Persistent Monitoring
- Full knowledge of mission space:
   Data Collection, Data Harvesting, Reward Maximization
- Distributed Optimization Framework
- Information exchange among nodes:
   Event-driven communication

Sensor + Actuation Networks: "Smart Parking" system

# SENSOR NETWORK AS A CONTROL SYSTEM



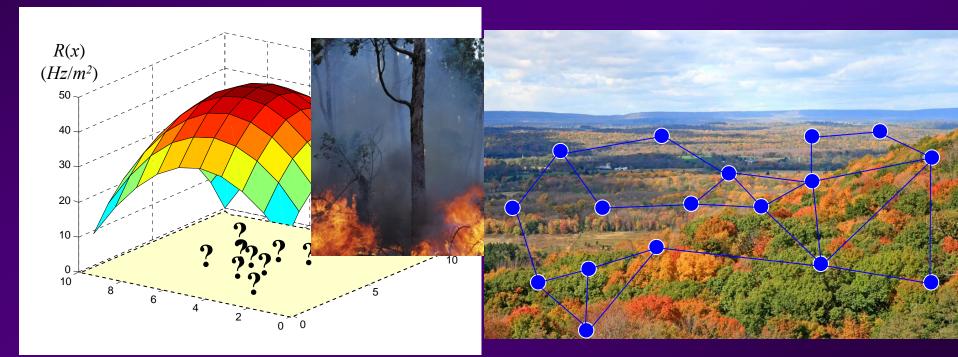
Christos G. Cassandras



#### **MOTIVATIONAL PROBLEM:** COVERAGE CONTROL

#### Deploy sensors to maximize "event" detection probability

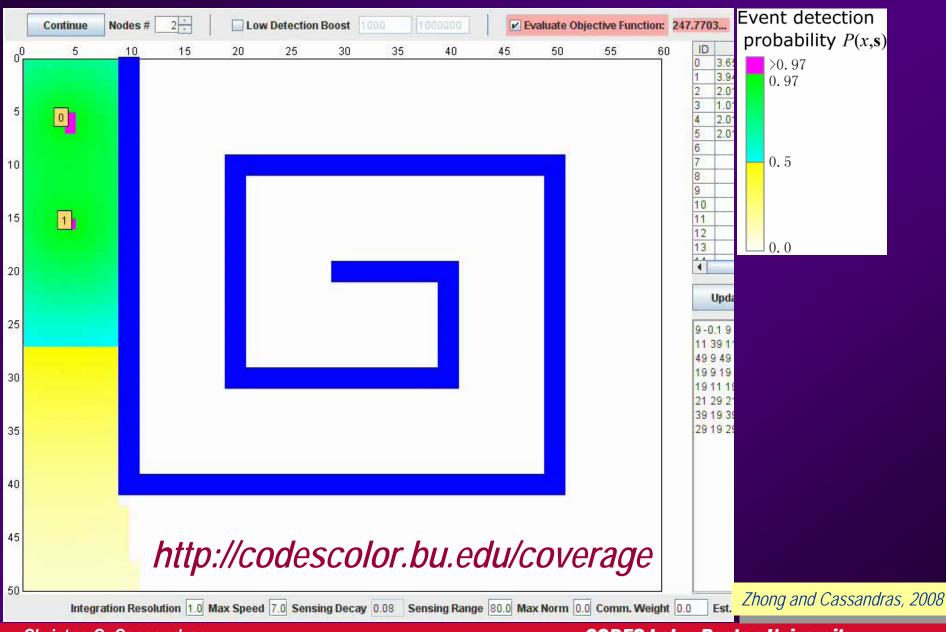
- unknown event locations
- event sources may be mobile
- sensors may be mobile



Perceived event density (data sources) over given region (mission space)

Christos G. Cassandras

## **OPTIMAL COVERAGE IN A MAZE**



Christos G. Cassandras

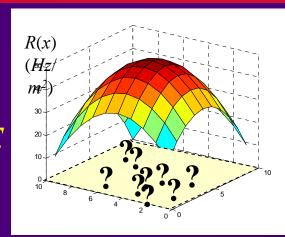
# **COVERAGE: PROBLEM FORMULATION**

- N mobile sensors, each located at  $s_i \in \mathbb{R}^2$
- Data source at x emits signal with energy E
- Signal observed by sensor node *i* (at *s<sub>i</sub>*)
- SENSING MODEL:

 $p_i(x, s_i) \equiv P[\text{Detected by } i \mid A(x), s_i]$ (A(x) = data source emits at x)

Sensing attenuation:  $p_i(x, s_i)$  monotonically decreasing in  $d_i(x) \equiv ||x - s_i||$ 





#### **COVERAGE: PROBLEM FORMULATION**

Joint detection prob. assuming sensor independence  $(s = [s_1, ..., s_N]$ : node locations)

$$P(x, \mathbf{s}) = 1 - \prod_{i=1}^{N} \left[ 1 - p_i(x, s_i) \right]$$

• OBJECTIVE: Determine locations s = [s<sub>1</sub>,...,s<sub>N</sub>] to maximize total *Detection Probability*:

$$\max_{\mathbf{s}} \int_{\Omega} R(x) P(x, \mathbf{s}) dx$$

Perceived event density

Christos G. Cassandras

#### **DISTRIBUTED COOPERATIVE SCHEME**

Set

$$H(s_1, \dots, s_N) = \int_{\Omega} R(x) \left\{ 1 - \prod_{i=1}^N \left[ 1 - p_i(x) \right] \right\} dx$$

• Maximize  $H(s_1,...,s_N)$  by forcing nodes to move using gradient information:

$$\frac{\partial H}{\partial s_k} = \int_{\Omega} R(x) \prod_{i=1, i \neq k}^{N} \left[ 1 - p_i(x) \right] \frac{\partial p_k(x)}{\partial d_k(x)} \frac{s_k - x}{d_k(x)} dx$$

$$s_i^{k+1} = s_i^k + \beta_k \frac{\partial H}{\partial s_i^k}$$

Desired displacement = 
$$V \cdot \Delta t$$

Cassandras and Li, 2005 Zhong and Cassandras, 2011

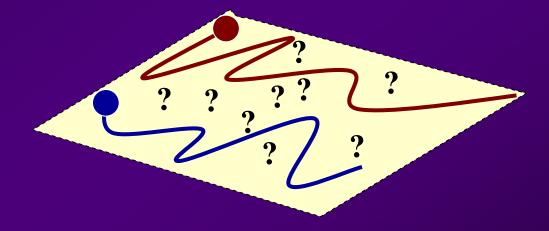
Christos G. Cassandras

PERSISTENT MONITORING (PERSISTENT SEARCH, SURVEILLANCE)

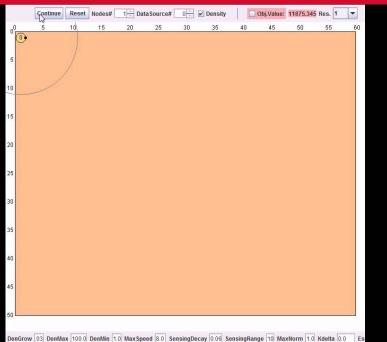
# **COVERAGE CONTROL v PERSISTENT MONITORING**

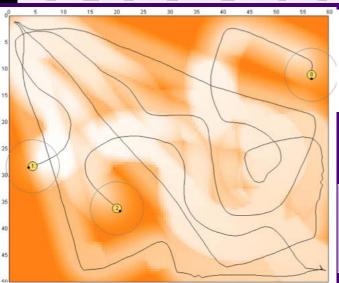
#### **PERSISTENT MONITORING:**

- environment cannot be fully covered by stationary team of nodes
- all areas of mission space must be visited infinitely often
- minimize some measure of overall uncertainty



#### **PERSISTENT SEARCH IN 2D MISSION SPACE**





Dark brown: HIGH uncertainty

White:

NO uncertainty

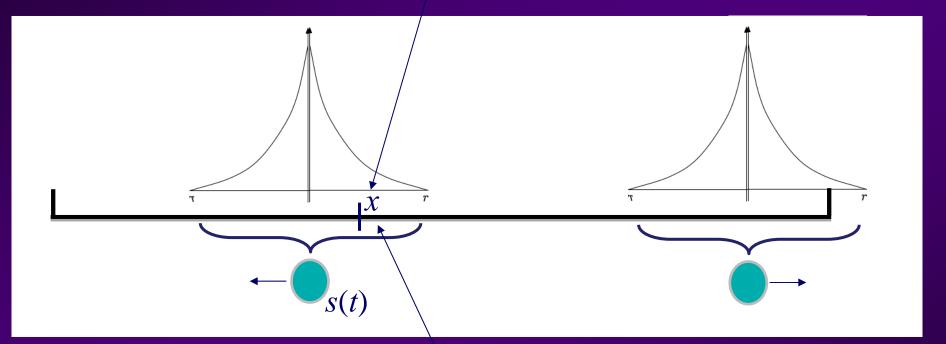
Agents play a cooperative PACMAN game against "uncertainty" which continuously regenerates...

JAVA multi-agent simulator designed to interactively test various controllers. Polygonal obstacles may be added to the environment. http://codescolor.bu.edu/simulators/density/density.html

Christos G. Cassandras

#### PERSISTENT MONITORING PROBLEM

#### **SENSING MODEL:** p(x,s) **Probability agent at** s senses point x

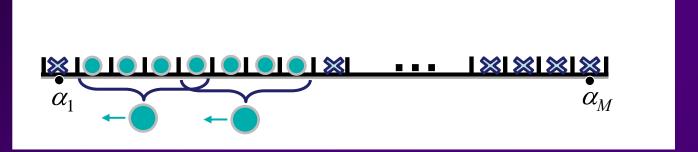


**UNCERTAINTY MODEL:** Associate to *x* Uncertainty Function R(x,t)such that  $\dot{R}(x,t) = \begin{cases} 0 & \text{if } R(x,t) = 0, A(x) < Bp(x,s(t)) \\ A(x) - Bp(x,s(t)) & \text{otherwise} \end{cases}$ 

Christos G. Cassandras

#### PERSISTENT MONITORING PROBLEM

#### Partition mission space $\Omega = [0,L]$ into *M* intervals:



For each interval i = 1, ..., M define Uncertainty Function  $R_i(t)$ :

$$\dot{R}_{i}(t) = \begin{cases} 0 & \text{if } R_{i}(t) = 0, A_{i} < BP_{i}(\mathbf{s}(t)) \\ A_{i} - BP_{i}(\mathbf{s}(t)) & \text{otherwise} \end{cases}$$

$$P_i(\mathbf{s}) = 1 - \prod_{j=1}^{N} \left[ 1 - p_i(s_j) \right]$$

$$p_i(s_j) \equiv p_j(\alpha_i, s_j)$$

where  $P_i(\mathbf{s})$  = joint prob. *i* is sensed by agents located at  $\mathbf{s} = [s_1, \dots, s_N]$ 

Christos G. Cassandras

### **OPTIMAL CONTROL PROBLEM**

#### Determine $u_1(t), \ldots, u_N(t)$ such that

$$\min_{u_1,...,u_N} J = \frac{1}{T} \int_0^T \sum_{i=1}^M R_i(t) dt$$

$$\dot{s}_n = u_n, \ |u_n(t)| \le 1, \ 0 \le s_n(t) \le L$$

$$\dot{R}_{i}(t) = \begin{cases} 0 & \text{if } R_{i}(t) = 0, A_{i} < BP_{i}(\mathbf{s}(t)) \\ A_{i} - BP_{i}(\mathbf{s}(t)) & \text{otherwise} \end{cases}$$

Uncertainty measure

#### Agent dynamics

Uncertainty dynamics

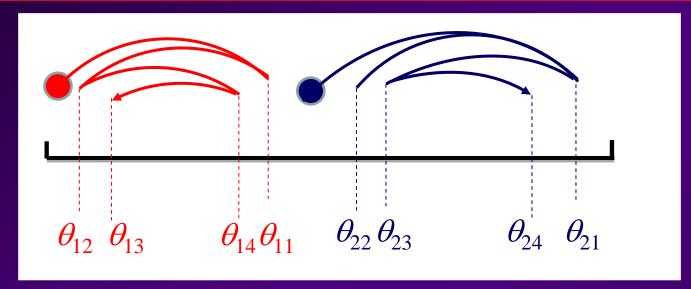
$$p_{j}(x,s_{j}) = \begin{cases} 1 - \frac{|x - s_{j}|}{r_{j}} & \text{if } |x - s_{j}| \le r_{j} \\ 0 & \text{if } |x - s_{j}| > r_{j} \end{cases}$$

Sensing model

Christos G. Cassandras

s.t.

#### **OPTIMAL CONTROL SOLUTION**



Optimal trajectory is fully characterized by parameter vectors:  $\theta_j = \left[\theta_{j1} \cdots \theta_{jS}\right], \quad j = 1, \dots, N$ 

such that agent *j* switches

from 
$$u_j^*(t) = 1$$
 to  $u_j^*(t) = -1$  at  $s_j = \theta_{jk'}$  if k is odd  
from  $u_j^*(t) = -1$  to  $u_j^*(t) = 1$  at  $s_j = \theta_{jk'}$  if k is even

Cassandras, Lin, Ding, 20012

# DATA COLLECTION

# **COVERAGE + DATA COLLECTION**

#### Recall tradeoff:

COVERAGE: persistently look for new targets ⇒ spread nodes out



DATA COLLECTION: optimize data quality ⇒ congregate nodes around known targets

#### MODIFIED DISTRIBUTED OPTIMIZATION OBJECTIVE:

collect info from detected data sources (targets) while maintaining a good coverage to detect future events

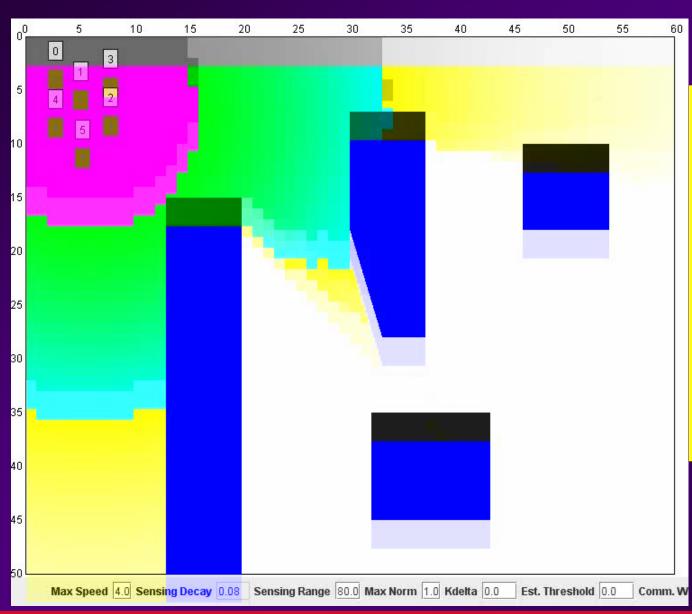
S(u) : data source value

$$H(\mathbf{s},t) = \int_{\Omega} R(x)P(x,\mathbf{s})dx + \beta \sum_{u \in \mathcal{D}_t} S(u)F(u,\mathbf{s})$$

 $D_t$ : set of data sources, estimated based on sensor observations F(u,s) : joint data collection quality at u (e.g., covariance)

Christos G. Cassandras

## **DEMO: REACTING TO EVENT DETECTION**

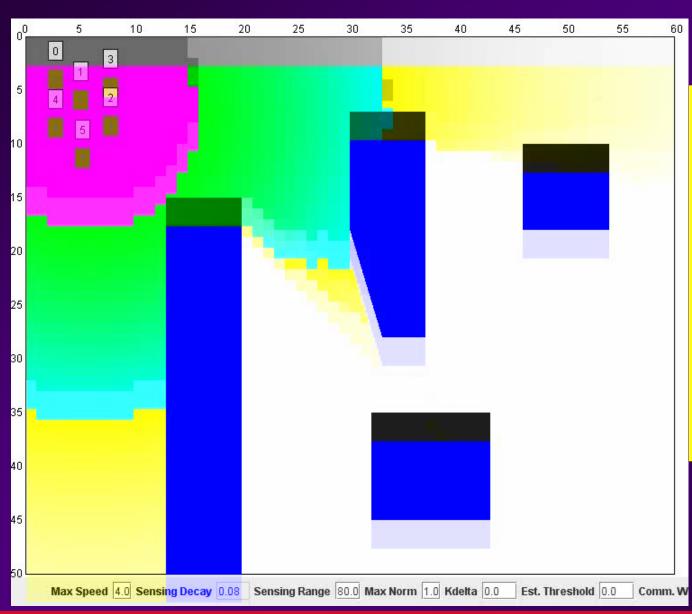


Important to note:

There is no external control causing this behavior. Algorithm includes tracking functionality automatically

Christos G. Cassandras

## **DEMO: REACTING TO EVENT DETECTION**



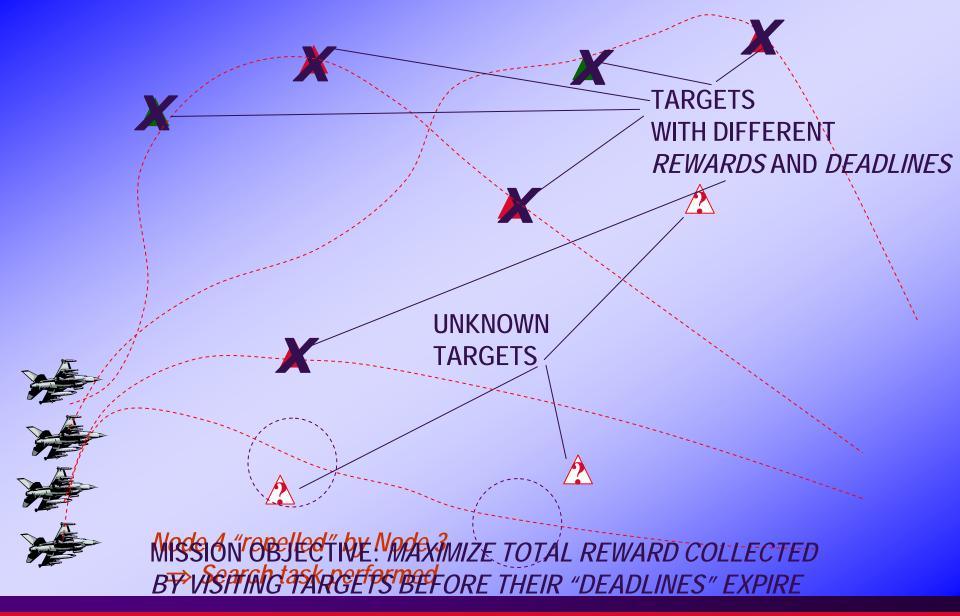
Important to note:

There is no external control causing this behavior. Algorithm includes tracking functionality automatically

Christos G. Cassandras

# DATA COLLECTION: REWARD MAXIMIZATION, DATA HARVESTING

#### **REWARD MAXIMIZATION MISSION**



Christos G. Cassandras

This is like the notorious TRAVELING SALESMAN problem, except that...

> ... there are multiple (cooperating) salesmen

> ... there are deadlines + time-varying rewards

In environment is stochastic (nodes may fail, threats damage nodes, etc.)

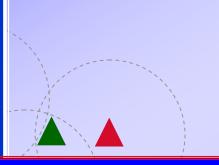
#### COOPERATIVE RECEDING HORIZON (CRH) CONTROL: MAIN IDEA

U<sub>2</sub>

- Do not attempt to assign nodes to targets
- Cooperatively steer nodes towards "high expected reward" regions
- Repeat process periodically/on-event

U

 Worry about final node-target assignment at the last possible instant



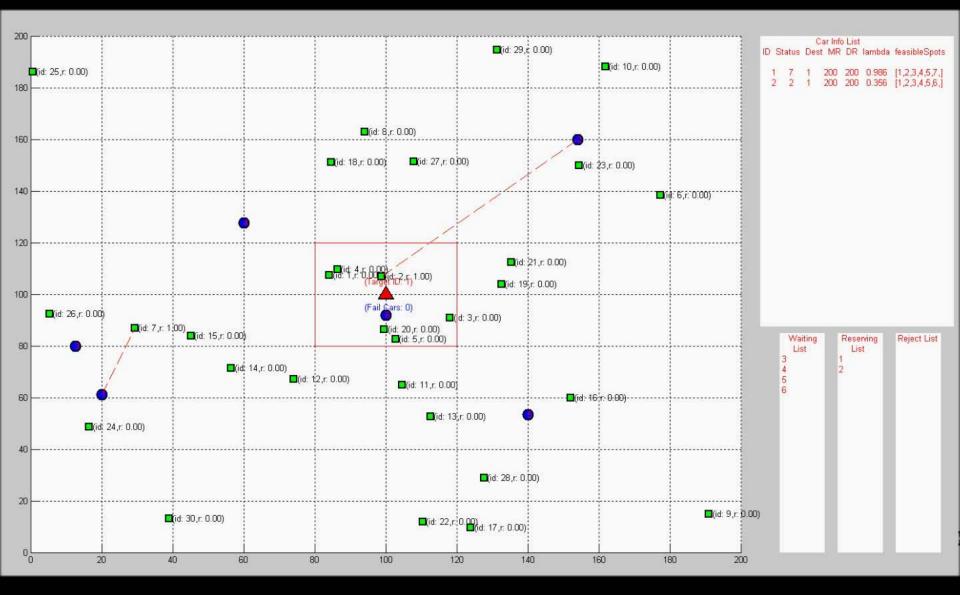
Turns out nodesconverge to targetson their own!Solve optimization problemby selecting all  $u_i$  to maximizetotal expected rewards over H

HORIZON, h

#### **REWARD MAXIMIZATION DEMO**

# II. 2 Robots, 4 Targets Case

Christos G. Cassandras



#### **BOSTON UNIVERSITY TEST BEDS**



Christos G. Cassandras

CISE - CODES Lab. - Boston University

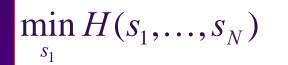
# THE BIGGER PICTURE: DISTRIBUTED OPTIMIZATION

## **DISTRIBUTED COOPERATIVE OPTIMIZATION**

*N* system components (processors, agents, vehicles, nodes), one common objective:

 $\min_{s_1,\ldots,s_N} H(s_1,\ldots,s_N)$ 

*s.t.* constraints on each  $s_i$ 



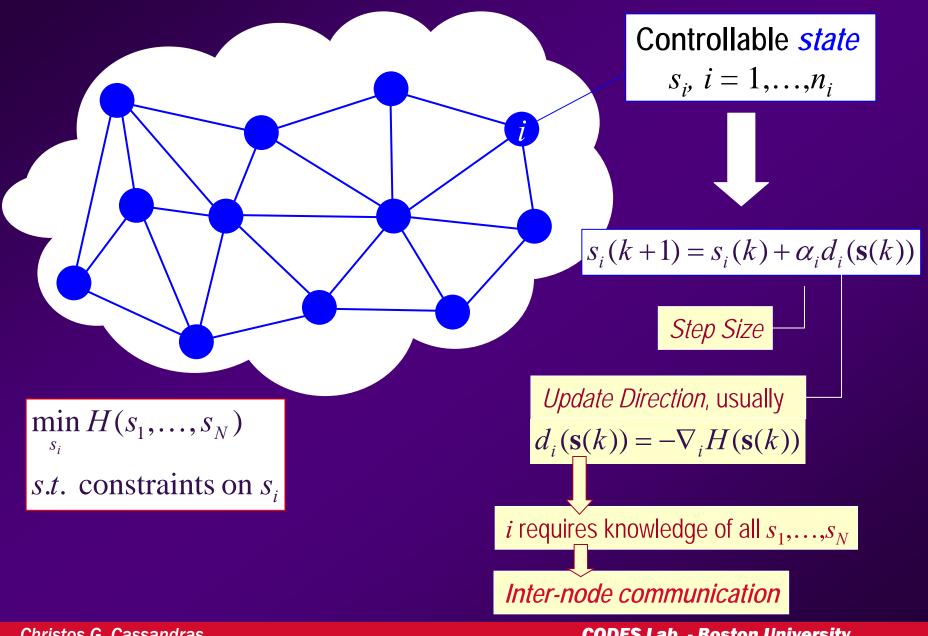
*s.t.* constraints on  $s_1$ 



$$\min_{s_N} H(s_1, \dots, s_N)$$
  
s.t. constraints on  $s_N$ 

Christos G. Cassandras

#### **DISTRIBUTED COOPERATIVE OPTIMIZATION**

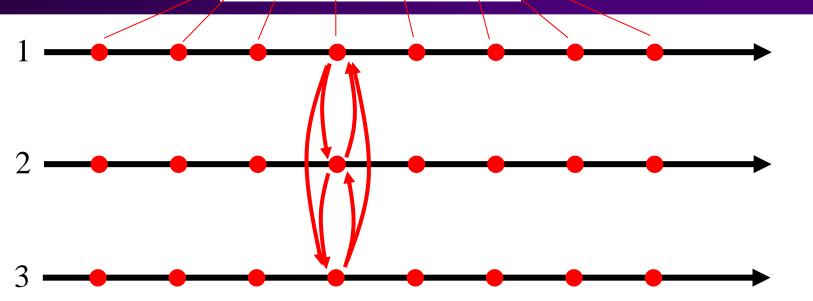


Christos G. Cassandras

# HOW MUCH COMMUNICATION FOR OPTIMAL COOPERATION ?

# **SYNCHRONIZED (TIME-DRIVEN) COOPERATION**

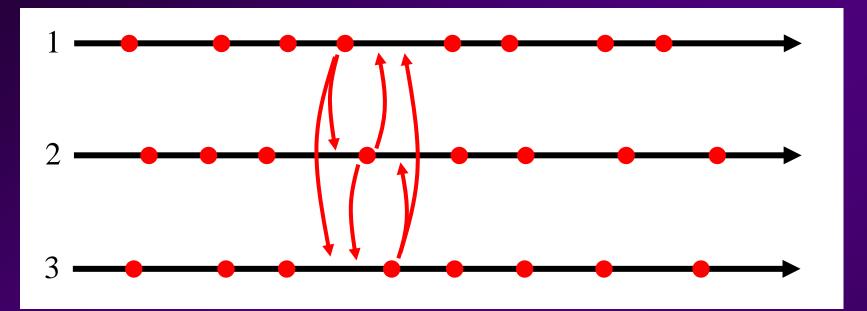
# COMMUNICATE + UPDATE



#### Drawbacks:

- Excessive communication (critical in wireless settings!)
- Faster nodes have to wait for slower ones
- Clock synchronization infeasible
- Bandwidth limitations
- Security risks

#### **ASYNCHRONOUS COOPERATION**



Nodes not synchronized, delayed information used

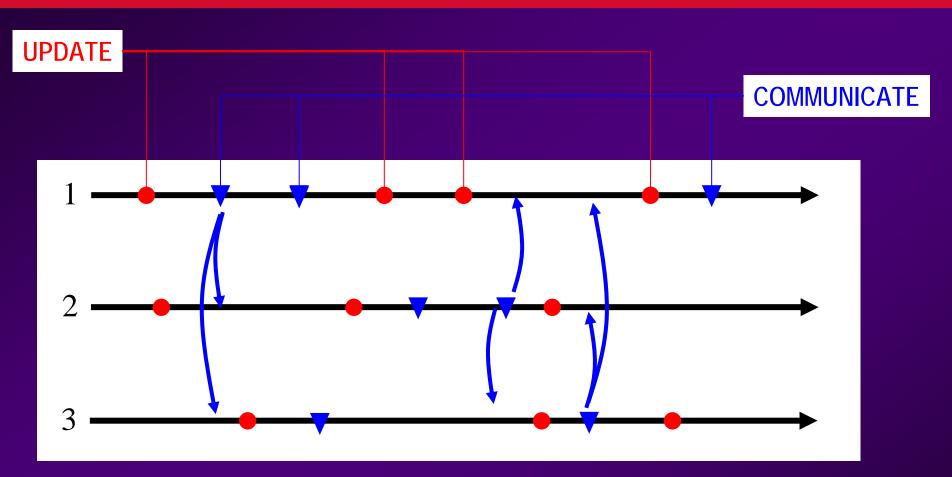
Update frequency for each node is bounded

technical conditions

 $\Rightarrow \frac{s_i(k+1) = s_i(k) + \alpha_i d_i(\mathbf{s}(k))}{\text{converges}}$ 

Bertsekas and Tsitsiklis, 1997

# **ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION**



UPDATE at *i*: locally determined, arbitrary (possibly periodic)
 COMMUNICATE from *i*: only when absolutely necessary

Christos G. Cassandras

#### WHEN SHOULD A NODE COMMUNICATE?

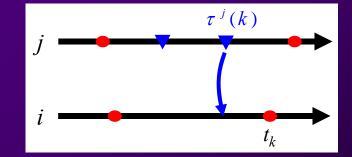
Node state at any time  $t : x_i(t)$ Node state at  $t_k$ :  $s_i(k)$   $\Rightarrow$   $s_i(k) = x_i(t_k)$ 

AT UPDATE TIME  $t_k$  :  $s_j^i(k)$  : node j state estimated by node i

Estimate examples:

 $\implies s_j^i(k) = x_j(\tau^j(k))$ 

Most recent value



$$\Rightarrow s_j^i(k) = x_j(\tau^j(k)) + \frac{t_k - \tau^j(k)}{\Delta_j} \cdot \alpha_i \cdot d_j(x_j(\tau^j(k)))$$
 Linear prediction

Christos G. Cassandras

#### WHEN SHOULD A NODE COMMUNICATE?

#### AT ANY TIME *t* :

- $x_i^j(t)$  : node *i* state estimated by node *j*
- If node *i* knows how *j* estimates its state, then it can evaluate  $x_i^j(t)$
- Node *i* uses
  - its own true state,  $x_i(t)$
  - the estimate that *j* uses,  $x_i^j(t)$

... and evaluates an ERROR FUNCTION  $g(x_i(t), x_i^j(t))$ 

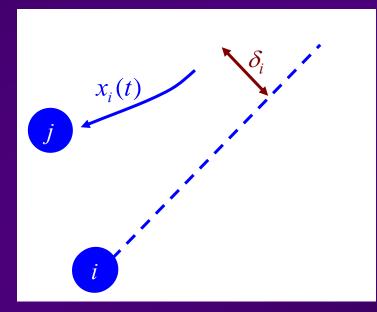
Error Function examples: 
$$\left\|x_{i}(t) - x_{i}^{j}(t)\right\|_{1}$$
,  $\left\|x_{i}(t) - x_{i}^{j}(t)\right\|_{2}$ 

Christos G. Cassandras

#### WHEN SHOULD A NODE COMMUNICATE?

## Compare ERROR FUNCTION $g(x_i(t), x_i^j(t))$ to THRESHOLD $\delta_i$

Node *i* communicates its state to node *j* only when it detects that its *true state*  $x_i(t)$  deviates from *j' estimate of it*  $x_i^j(t)$ so that  $g(x_i(t), x_i^j(t)) \ge \delta_i$ 



#### ⇒ *Event-Driven* Control

Christos G. Cassandras

#### CONVERGENCE

#### Asynchronous distributed state update process at each *i*:

$$s_i(k+1) = s_i(k) + \alpha \cdot d_i(\mathbf{s}^i(k))$$

*Estimates of other nodes, evaluated by node i* 

$$\delta_i(k) = \begin{cases} K_{\delta} \| d_i(\mathbf{s}^i(k)) \| & \text{if } k \text{ sends update} \\ \delta_i(k-1) & \text{otherwise} \end{cases}$$

**THEOREM**: Under certain conditions, there exist positive constants  $\alpha$  and  $K_{\delta}$  such that

 $\lim_{k\to\infty}\nabla H(\mathbf{s}(k))=0$ 

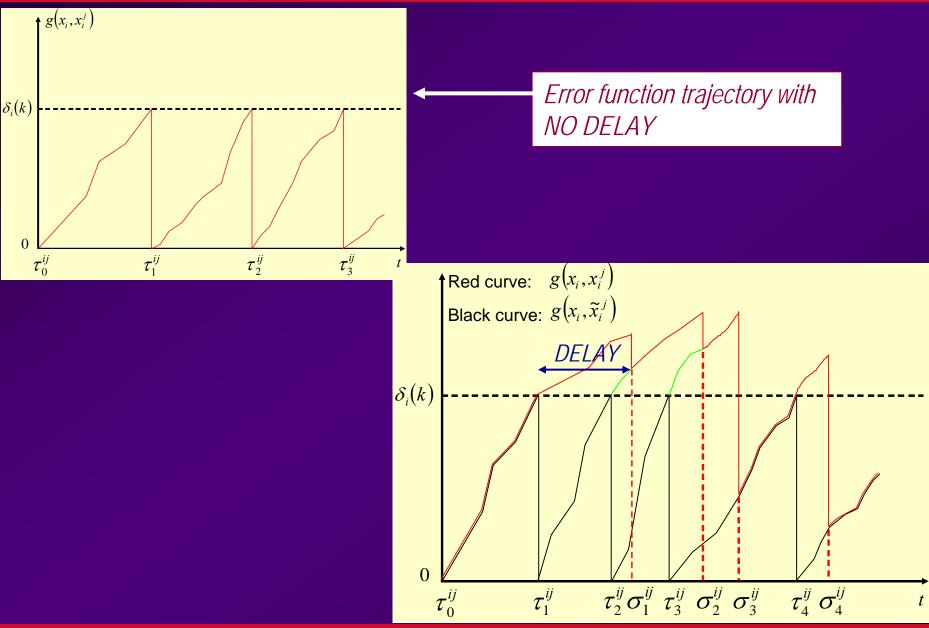
Zhong and Cassandras, IEEE TAC, 2010

**INTERPRETATION:** 

*Event-driven cooperation achievable with minimal communication requirements*  $\Rightarrow$  *energy savings* 

Christos G. Cassandras

#### **COONVERGENCE WHEN DELAYS ARE PRESENT**



Christos G. Cassandras

## **COONVERGENCE WHEN DELAYS ARE PRESENT**

#### Add a boundedness assumption:

**ASSUMPTION:** There exists a non-negative integer *D* such that if a message is sent before  $t_{k-D}$  from node *i* to node *j*, it will be received before  $t_k$ .

**INTERPRETATION:** at most *D* state update events can occur between a node sending a message and all destination nodes receiving this message.

**THEOREM**: Under certain conditions, there exist positive constants  $\alpha$  and  $K_{\delta}$  such that

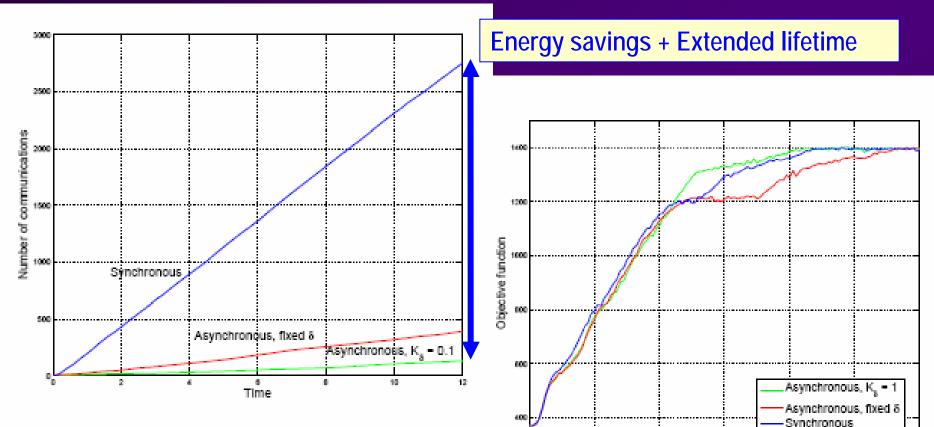
 $\lim_{k\to\infty}\nabla H(\mathbf{s}(k))=0$ 

NOTE: The requirements on  $\alpha$  and  $K_{\delta}$  depend on **D** and they are tighter.

Zhong and Cassandras, IEEE TAC, 2010

Christos G. Cassandras

#### SYNCHRONOUS v ASYNCHRONOUS OPTIMAL COVERAGE PERFORMANCE



#### SYNCHRONOUS v ASYNCHRONOUS:

No. of communication events for a deployment problem *with obstacles* 

#### SYNCHRONOUS v ASYNCHRONOUS:

Time

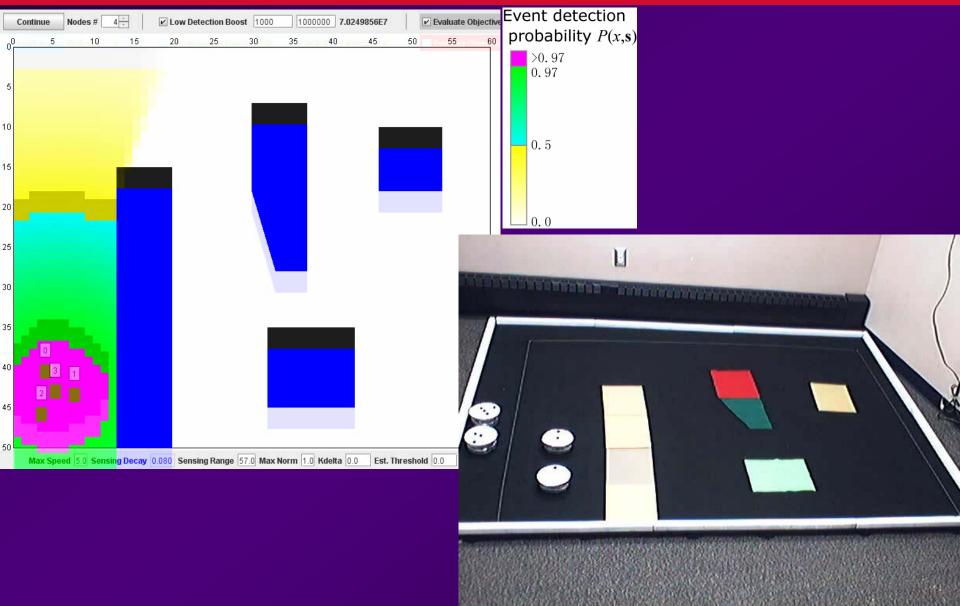
60

12

Achieving optimality in a problem *with obstacles* 

Christos G. Cassandras

#### DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH OBSTACLES – SIMULATED AND REAL



Christos G. Cassandras

#### **SENSOR + ACTUATION NETWORK**



CISE - CODES Lab. - Boston University

# SENSOR + ACTUATION: A "SMART PARKING" SYSTEM

**30%** of vehicles on the road in the downtowns of major cities are cruising for a parking spot. It takes the average driver **7.8** minutes to find a parking spot in the downtown core of a major city.

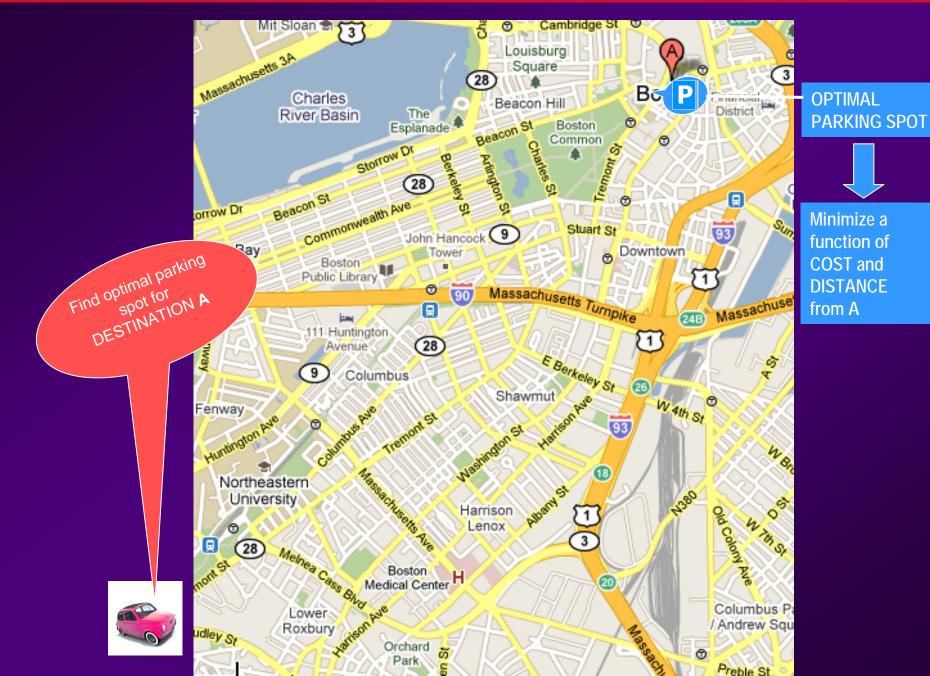
R. Arnott, T.Rave, R.Schob, Alleviating Urban Traffic Congestion. 2005

Over one year in a **small** Los Angeles business district, cars cruising for parking created the equivalent of **38** trips around the world, burning **47,000** gallons of gasoline and producing **730** tons of carbon dioxide.

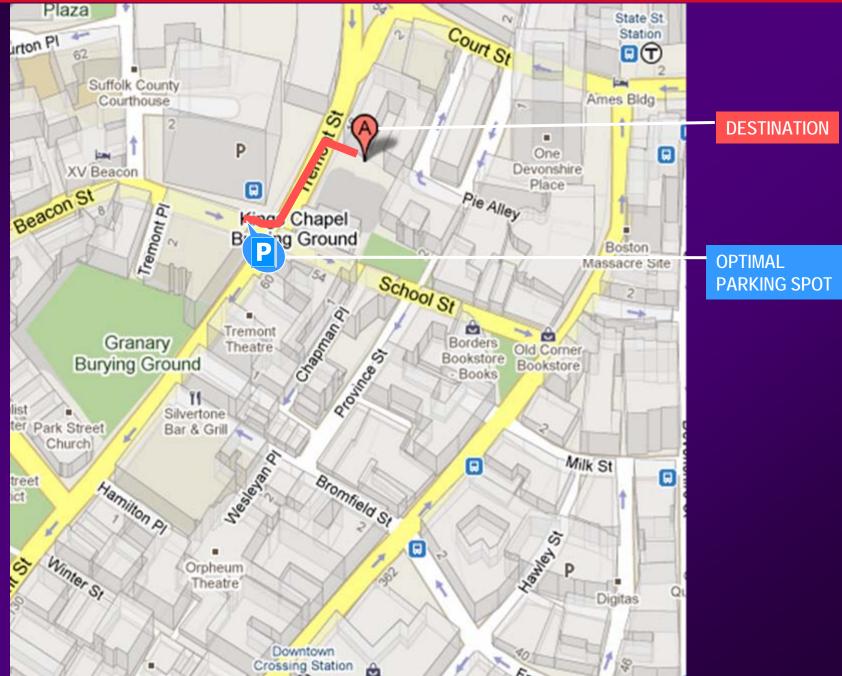
Donald Shoup, The High Cost of Free Parking. 2005



#### "SMART PARKING" - CONCEPT



#### **"SMART PARKING" - CONCEPT**



#### **GUIDANCE-BASED PARKING – DRAWBACKS...**

#### Drivers:

- May not find a vacant space
- May miss better space
- Processing info while driving

## City:

- Imbalanced parking utilization
- May create ADDED CONGESTION (as multiple drivers converge to where a space exists)





## Searching for parking $\Rightarrow$ Competing for parking

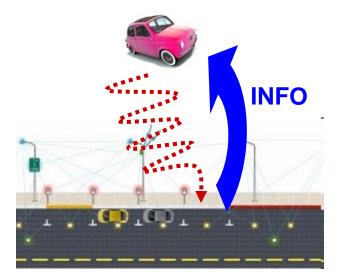
#### **SMART PARKING – NEW FEATURES**

- System finds BEST parking space for driver (based on PROXIMITY to destination + parking COST)
- Space **RESERVED**  $\Rightarrow$  guaranteed parking space
- System continuously IMPROVES assigned parking space
- System ensures FAIRNESS in parking space allocation
- Parking space UTILIZATION INCREASES

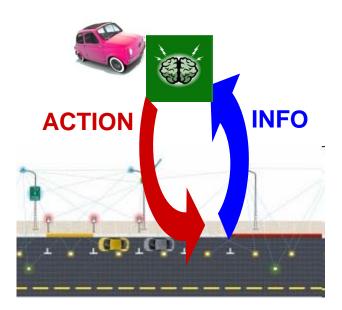
## Driver makes decisions ⇒ System makes *optimal* decisions for driver

#### **GUIDANCE-BASED PARKING v "SMART PARKING"**

#### COLLECTING DATA IS NOT "SMART", JUST A NECESSARY STEP TO BEING "SMART"



## PROCESSING DATA TO MAKE GOOD DECISIONS IS "SMART"



## **SMART PARKING – IMPLEMENTATION**

 Parking space availability detection

- Standard sensors
   (e.g., magnetic, cameras)
- Wireless sensor networking

Vehicle localization

📫 🔹 GPS

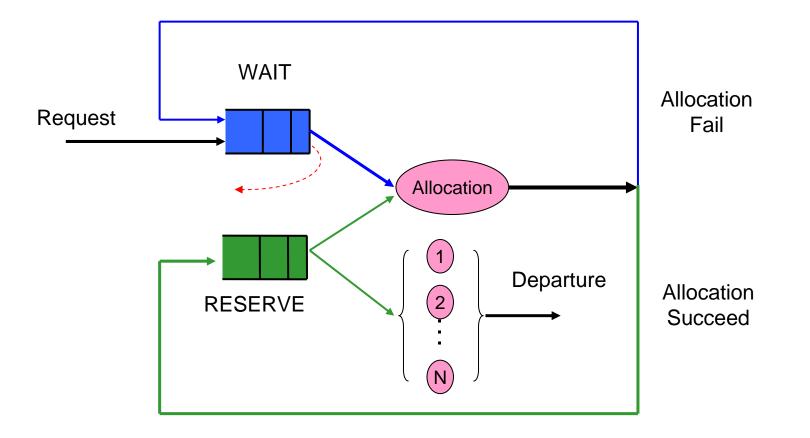
 System-Driver communication

- 9
  - Smartphone
  - Vehicle navigation system

Parking reservation

- Folding/Retreating barrier
  - Red/Green/Yellow light system





#### **OBJECTIVE FUNCTION**

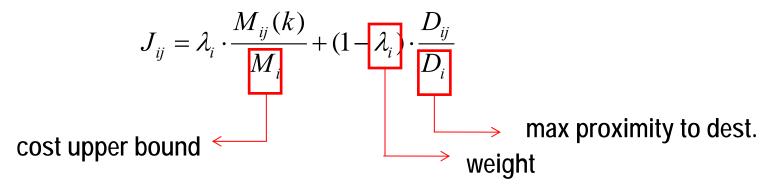
Objective function at *k*th decision point:

$$J(k) = \min_{X} \sum_{i \in W(k) \cup R(k)} \sum_{j \in \Omega_i(k)} x_{ij} \cdot J_{ij}(k)$$

**Decision variables:** 

$$x_{ij} = \begin{cases} 0 & if \text{ user } i \text{ is NOT assigned to resource } j \\ 1 & if \text{ user } i \text{ is assigned to resource } j \end{cases}$$

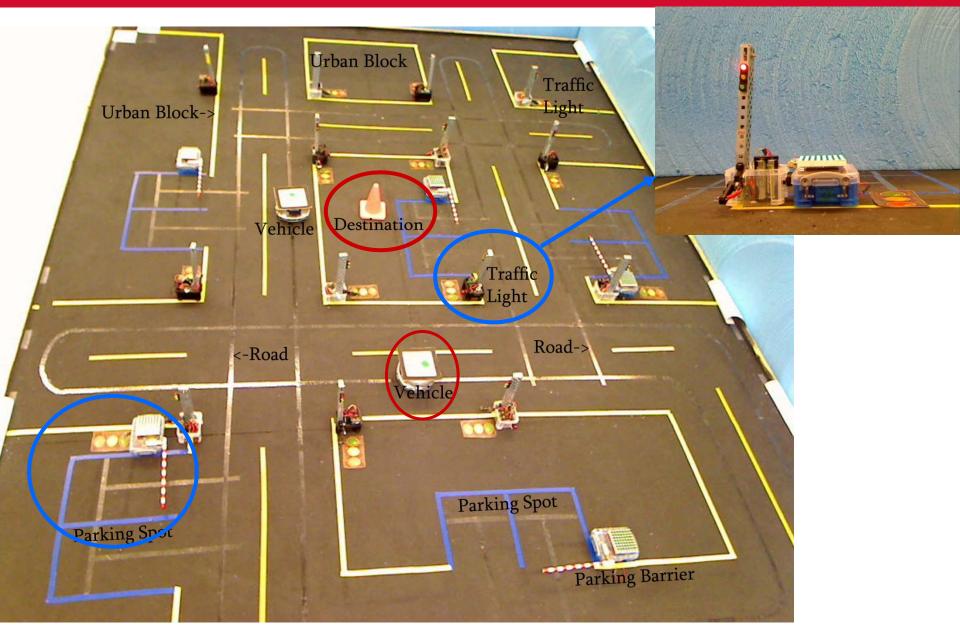
User cost function:

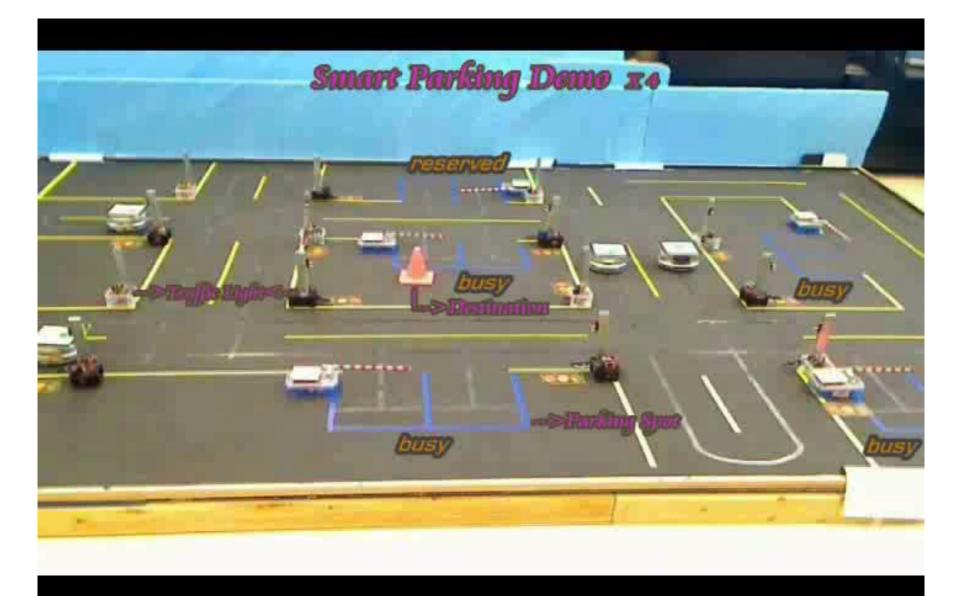


#### **MIXED INTEGER LINEAR PROBLEM (MILP)**

$$\begin{aligned} & \underset{i \in W(k) \cup R(k) \neq \Omega_{i}(k)}{\min \sum_{i \in W(k) \cup R(k)} \sum_{j \in \Omega_{i}(k)} x_{ij} \cdot J_{ij}(k) + \sum_{i \in W(k)} (1 - \sum_{j \in \Omega_{i}(k)} x_{ij})} \\ \text{s.t.} \\ & \underset{i \in W(k) \cup R(k)}{\sum x_{ij} \leq 1} \quad \forall j \in \Gamma(k) \\ & \sum_{j \in \Omega_{i}(k)} x_{ij} \leq 1 \quad \forall i \in W(k) \\ & \sum_{j \in \Omega_{i}(k)} x_{ij} = 1 \quad \forall i \in R(k) \\ & \sum_{j \in \Omega_{i}(k)} x_{ij} \cdot J_{ij}(k) \leq J_{iq_{i}(k-1)}(k) \quad \forall i \in R(k) \\ & & & \text{Reservation Guarantee} \\ & & (\sum_{n \in \Omega_{i}(k)} x_{in}) - x_{mj} \geq 0 \quad \forall j \in \Gamma(k), i \in \{i \mid j \in \Omega_{i}(k)\}, \\ & & & m \in \{m \mid j \in \Omega_{m}(k), t_{mj} > t_{ij}, m \in W(k)\} \\ & & x_{ij} \in \{0,1\} \quad \forall i \in W(k) \cup R(k), j \in \Omega_{i}(k) \end{aligned}$$

#### **"SMART PARKING" TEST BED**

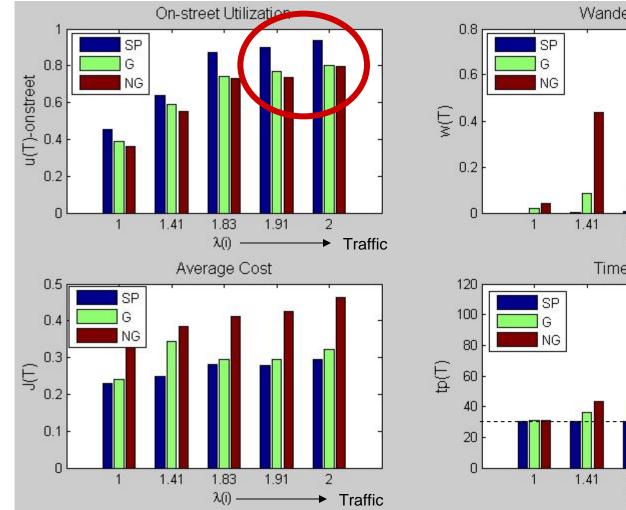


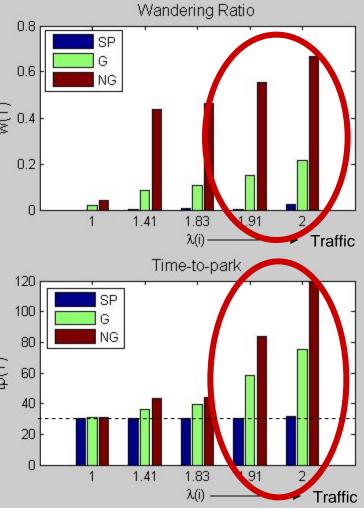


#### SIMULATION CASE STUDY



### **CASE STUDY RESULTS**





SP: BU Smart Parking system **NG**: No guidance (status quo)

G: Parking using guidance-based systems

#### **KEY CONCLUSIONS**

## 10-20% higher parking utilization ⇒ HIGHER REVENUE, LOWER CONGESTION

# 2. % drivers searching for parking (wandering) < 2%</li> ⇒ HIGHER REVENUE, LOWER CONGESTION

 3. 50% reduction in parking time under heavy traffic ⇒ LOWER CONGESTION, LESS FUEL, DRIVER COMFORT

#### **IMPLEMENTATION**

"Smart Parking" proof-of-concept study implemented in a small (27 space) garage at Boston University during summer 2011:

- Parking request through iPhone app.



- Garage gateway: Laptop computer located in garage

-Sensor and light system device: Custom-built device affixed on ceiling over each parking spot.





#### **Buniverse**

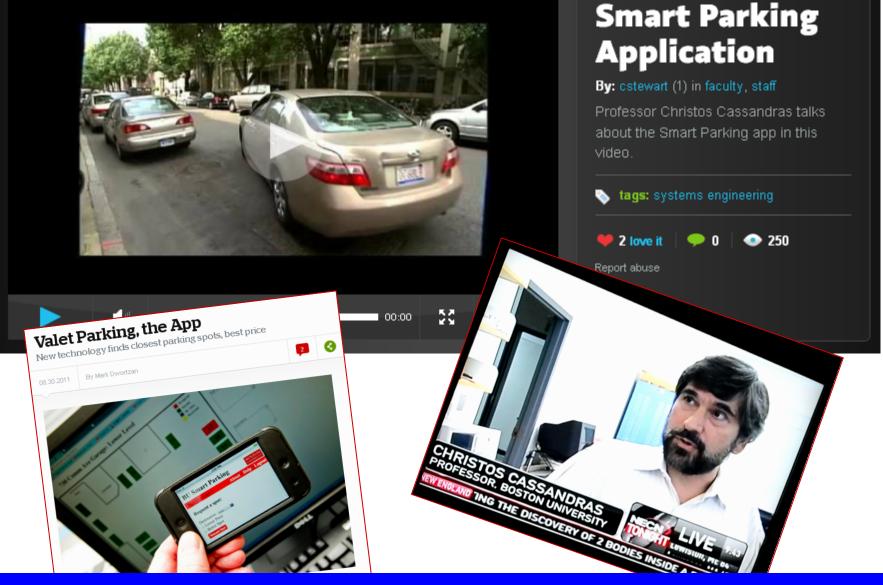
Upload

Browse - Se

Search videos

Ø

#### http://www.bu.edu/buniverse/view/?v=1zqb6NnD



http://www.necn.com/09/23/11/JoeBattParkingapp/landing\_scitech.html?blockID=566574&feedID=4213

## **PROJECT TEAM, RECOGNITION**

TEAM: Yanfeng Geng (PhD student), Ted Grunberg (Undergrad. Student), Andy Ochs, Mikhail Gurevich, Greg Berman (BU SOM students)

- 2011 IBM/IEEE Smarter Planet Challenge competition, team won 2nd place prize
- Best Student Paper Award, Finalist, 2011 IEEE Multi-Conference
   on Systems and Control
- Third prize poster on "Smart Parking", INFORMS 2011 Northeastern Conference
- Ongoing implementation under BU OTD "Ignition Award"
- Working with City of Boston under *IBM Award* for "Combating Climate Change Through Smarter Urban Transportation Policies"

• Geng, Y., and Cassandras, C.G., "Dynamic Resource Allocation in Urban Settings: A "Smart Parking" Approach", Proc. of *2011 IEEE Multi-Conference on Systems and Control*, Oct. 2011.

• Geng, Y., and Cassandras, C.G., "A New "Smart Parking" System Based on Optimal Resource Allocation and Reservations", *Proc. of 14th IEEE Intelligent Transportation Systems Conf.*, pp. 979-984, Nov. 2011.

http://www.bu.edu/buniverse/view/?v=1zqb6NnD

#### **"SMART CITY" AS A CYBER-PHYSICAL SYSTEM**

