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COOPERATIVE CONTROL SETTING

COOPERATIVE “MISSION” TYPES

REWARD MAXIMIZATION MISSIONS

COOPERATIVE RECEDING HORIZON (CRH) CONTROL

SENSOR NETWORKS, COVERAGE CONTROL MISSIONS

DEMOS: Applets and Movies
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TARGETS

VEHICLES
(MOBILE NODES)



DIFFERENT COOPERATIVE MISSION TYPES 
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RENDEZ-VOUS AT SOME TARGET POINT

FORMATION MAINTENANCE

REWARD MAXIMIZATION 

COVERAGE CONTROL



RENDEZ-VOUS MISSION 
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RENDEZ-VOUS
AT THIS TARGET
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Christos G. Cassandras

 

CODES Lab. -

 

Boston University

TARGETS
WITH DIFFERENT
REWARDS AND DEADLINES

MISSION OBJECTIVE: MAXIMIZE TOTAL REWARD COLLECTED
BY VISITING TARGETS BEFORE THEIR “DEADLINES” EXPIRE
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CONTINUED

UNKNOWN
TARGETSX

X
X

X

X
X

Vehicle 4 “repelled” by Vehicle 3 
⇒ Search task performed



COVERAGE CONTROL MISSION 
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ALL TARGETS
UNKNOWN
ONLY DENSITY
FUNCTION ASSUMED
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p1i ,  i = 1,…,6

p2i ,  i = 1,…,6p3i ,  i = 1,…,6
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R1 R3
R4

R2

R5

R6

r1i ,  j = 1,…,3

r2i ,  j = 1,…,3

r3i ,  j = 1,…,3

r6i ,  j = 1,…,3

r4i ,  j = 1,…,3

r5i ,  j = 1,…,3

R1 φ1 (t) R3 φ3 (t) R4 φ4 (t)

R2 φ2 (t)

R5 φ5 (t)

R6 φ6 (t)
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CONTINUED

… there are multiple (cooperating) salesmen

… there are deadlines + time-varying costs

… environment is stochastic 
(vehicles may fail, threats damage vehicles, etc.)

This is like the notorious TRAVELING SALESMAN  
problem, except that…



SOLUTION APPROACHES 

Christos G. Cassandras

 

CODES Lab. -

 

Boston University

Stochastic Dynamic Programming – Wohletz et al, 2001
Extremely complex…

Functional Decomposition
Dynamic Resource Allocation – Castanon and Wohletz, 2002

Assignment Problems through Mixed Integer Linear 
Programming – Bellingham et al, 2002

Combinatorially complex…
Path Planning – Hu and Sastry, 2001, Lian and Murray 2002, Gazi and 

Passino, 2002, Bachmayer and Leonard, 2002
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R1

R2

R3

R4

R5

COMBINATORIAL + STOCHASTIC COMPLEXITY 

1. Target Assignment           2. Routing             3. Path Control



RECEDING HORIZON (RH) CONTROL: MAIN IDEA
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u1

u2 u3

ACTION
HORIZON, h

PLANNING
HORIZON, H

Solve optimization problem
by selecting all ui to maximize
total expected rewards over H

• Do not attempt to assign vehicles to targets
• Cooperatively steer vehicles 

towards “high expected reward” regions
• Repeat process periodically/on-event
• Worry about final vehicle-target assignment

at the last possible instant
Turns out vehicles
converge to targets

on their own!

See also Franco, Parisini, Polycarpou 04; Dunbar, Murray, 04; Richards, How, 04See also Franco, Parisini, Polycarpou 04; Dunbar, Murray, 04; Richards, How, 04



CRH CONTROL PROBLEM FORMULATION 

Target positions (i = 1,…,N): yi ∈R²

Vehicle dynamics (j = 1,…,M): 
• State: xj (t) ∈R² position of jth vehicle at time t
• Control: uj (t) Vehicle heading at time t
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At kth iteration, time tk (k=1,2,…):
• Planning Horizon: Hk



RH PROBLEM FORMULATION 
At kth iteration (k=1,2,…):

Earliest time vehicle j can reach target i under control uj (tk ):

CONTINUED
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Probability vehicle j
assigned to target 
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CRH PROBLEM FORMULATION CONTINUED

Objective at kth iteration: 
Maximize EXPECTED REWARD over horizon Hk
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veh. j value

Prob. vehicle  j
destroyed by  target i
[depends on uj (t)]
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)( ijijp τ

Prob. vehicle  j
collects  target i reward
[depends on uj (t)]

Target i value attainable by veh. j
[depends on uj (t)]

)( kkij Htq +

Prob. vehicle  j
assigned to  target i
[depends on uj (t)]

Control
vehicle
headings

Earliest time when 
vehicle j can collect 
reward from target i
[depends on uj (t)]



THE FUNCTION φi (t) [REWARD DISCOUNTING FUNCTION]
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• Targets with deadlines:
1

• Targets with time 
windows: 1



THE FUNCTION φi (t)
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CONTINUED

• Sequencing targets:
1

φ1 (t)
φ2 (t)

• A general purpose 
φ−function:
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THE FUNCTION qij [TARGET ASSIGNMENT FUNCTION]

• Vehicle-to-target distance: dij

• Relative distance: 
∑ =

= M

m im

ij
ij

d

d

1

δ

• Target assignment function qij (δij ):

Monotonically non-increasing and s.t.

0)1(   ,1)0( == ijij qq
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• A example of qij function (M=2):

THE FUNCTION qij CONTINUED
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CRCRCR

qij (t) defines DYNAMIC RESPONSIBILITY REGIONS for vehicle j

• Sj – Full Responsibility Region (FR) δij ≤Δ

• Cj – Cooperative Region (CR) Δ <δij ≤1-Δ

• Ij – Invisibility Region (IR) δij > 1-Δ

THE FUNCTION qij CONTINUED

IRIRFRFR xj

Vehicle
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Targets in FR
committed to

vehicle

Targets in IR
ignored by

vehicle
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Voronoi partition

THE FUNCTION qij CONTINUED

Partition of a plane with into n convex polygons such that
each polygon contains exactly one point and every point
in a given polygon is closer to its central point than to any other. 
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What happens as
parameter Δ

 
increases ?



2-VEHICLE CASE – DYNAMIC PARTITIONING

II: Only vehicle 1 goes to target III: Both vehicles go to target
IV: Only vehicle 2 goes to target (1 is repelled !)
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Vehicle
Locations

Possible
Target
Location



PLANNING AND ACTION HORIZONS
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PLANNING Horizon H(t):

)(min)()(
,min tdtdtH ijji

≡=

ACTION Horizon h(t):

10   ,0   ),()( ≤≤≥+= HHHH tHth βαβα

OR:  Whenever next EVENT occurs
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FOUR veh’s:
Green
Purple
BlacK
BLue
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MAIN IDEA IN CRH APPROACH:
Replace complex Discrete Stochastic Optimization problem 
by a sequence of simpler Continuous Optimization problems

But how do we guarantee that vehicles ultimately 
head for the desired DISCRETE TARGET POINTS?

TARGET ASSIGNMENT 



STABILITY ANALYSIS 

• TARGETS: yi • UAVs: xj

DEFINITION: Vehicle trajectory                          
generated by a controller is stationary, if there 
exists some            , such that                              for 
some         

QUESTION: 
Under what conditions is a CRH-generated 
trajectory stationary ?
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STABILITY ANALYSIS
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STABILITY ANALYSIS
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Objective function reduces to: ∑∑
= =

−=
N

i

M

j
ijiji qyxRJ

1 1
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CONTINUED

i.e., minimize the potential function J(x) over a set of M circles:

  1
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  2
kF   M
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x
xCRH controller solves

optimization problem:



MAIN STABILITY RESULT
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Llxxx Ml
M

ll ,,1   ,),...,( 2
1 K=∈= RLocal minima of J(x):

Vector of vehicle positions
at kth iteration of CRH controller:     xk

If all local minima coincide with targets, 
the CRH-generated trajectory is stationary

Theorem:  Suppose .
If, for all l = 1,…,L,     = yi for some i = 1,…,N, j = 1,…,M,
then                                      (b > 0 is a constant). 

l
jx

bJJ kk >− + )()( 1xx

)(min
, kijjik tdH =



MAIN STABILITY RESULT
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When do all local minima coincide with target points?
QUESTION:

1 Vehicle, N targets

2 Vehicles, 1 target

2 Vehicles, 2 targets

0
,1

>
−

−
− ∑

≠=

N

ijj ji

ji
ji yy

yy
RRIf there exists a yi s.t.



• Limited look-ahead – control optimizes expectation
over “planning horizon”

• Control updates  – event-driven (events are deterministic or random)
or time-driven (for a given “action horizon”)

• Target assignment  – done implicitly, not explicitly: 
No combinatorial problem involved

• Assignment + Routing + Path  Control – all done together

TO RECAP…
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• Target values change – deadlines, target sequencing, return to base

• Vehicle capabilities change - resource depletion, failures, damage

• Threat capabilities change - radar on/off, threat damage

• Target locations change - new targets, moving targets

RH CONTROLLER FEATURES 
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CONTINUED

• Obstacle avoidance - targets with negative values

• Randomness - new control actions in response to random events

• Constraints – heading change, heading-dependent costs,
sensing tasks



ONLY KNOWN TARGET

DETECTION RADIUS: 20



































DISTRIBUTED COOPERATIVE CONTROL

Construct GRADIENT FIELD instead of artificial potential field
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Force exerted by target i
on vehicle j given that it is the
only vehicle in the mission space

Cooperation coefficient



DISTRIBUTED COOPERATIVE CONTROL

• 2 examples (M=2, N=10)
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OTHER ISSUES 
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Local optima in the CRH optimization problem

Oscillatory vehicle behavior (instabilities)

Additional path constraints

Does CRH control generate optimal
assignments?



REWARD MAXIMIZATION MISSION DEMO
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MOVIES OF SUCH MISSIONS WITH SMALL ROBOTS: 
http://frontera.bu.edu/CoopCtrl.html3 Khepera robots 

executing mission: 
visiting 8 targets with 
different rewards and 
deadlines. Robots 
communicate wirelessly 
and dynamically update 
headings. Overhead 
vision system provides 
location data.

Inner ring - “reward":
R - 200, G - 300, B - 600
Outer ring - "deadline":
R - 80s, G - 50s, B - 20s



COVERAGE CONTROL MISSION 
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SENSOR FIELD WITH
UNKNOWN DATA SOURCES
- ONLY DENSITY
FUNCTION ASSUMED

- Meguerdichian et al, INFOCOM, 2001, 
- Cortes et al, IEEE Trans. on Robotics and Auto., 2004 
- Li and Cassandras, CDC, 2005 

- Meguerdichian et al, INFOCOM, 2001, 
- Cortes et al, IEEE Trans. on Robotics and Auto., 2004 
- Li and Cassandras, CDC, 2005



WHAT’S A SENSOR NETWORK (SNET)?
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A NETWORK consisting 
of devices (sensors) that:

… communicate wirelessly
… are battery-powered
… may have different 

characteristics
… have limited processing   

capabilities
… have limited life
… often operate in 

noisy/adversarial environments
… monitor/control physical 

processes



WHAT’S A SENSOR NETWORK (SNET)?
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SNETs will consist of thousands of interacting devices!

CONTINUED



WHY ARE SNETs EXCITING?
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They interact with the physical world
They promise fascinating applications:

- Smart Buildings (locate persons/objects, find closest
resource, adjust environment, detect emergency conditions)

- Health monitoring
- Security and military applications
- Environmental monitoring
- Inventory monitoring/replenishment (smart shelves)
- Equipment condition monitoring and active maintenance
(smart appliances)

They realize a convergence of the “3 Cs”:

Communications + Computing + Control 
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COVERAGE CONTROL MISSION
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GOAL: Deploy mobile nodes to maximize data source detection
probability 

– unknown data sources
– data sources may be mobile

Perceived data source density
over mission space

? ??? ?
?

? ??



PROBLEM FORMULATION
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Sensing attenuation: 
pi (x) is a decreasing function of di (x) ≡

 
||x - si ||

(distance between x and si )

Data source at x emits signal with energy E

N mobile sensors, each located at si∈R2

Signal observed by sensor node i (at si )

Sensing model: 
)),(|by  Detected()( ii sxAipxp ≡

( A(x) = data source emits at x )
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Joint detection prob.  assuming sensor independence:
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i
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1
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OBJECTIVE: 
Determine locations si (i=1,…,N)
to maximize total detection probability:
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PROBLEM FORMULATION CONTINUED

Perceived data source density
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CONTINUEDDISTRIBUTED COOPERATIVE SCHEME

Denote

[ ] dxxpxRssF
N

i
iN ∫ ∏

Ω = ⎭
⎬
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−−=
1

1 )(11)(),,( K

Maximize F(s1,…,sN) by forcing nodes to move using 
gradient information:
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CONTINUEDDISTRIBUTED COOPERATIVE SCHEME

[ ] dx
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,1

This has to be evaluated numerically.

Not doable for a mobile sensor with limited 
computation capacity.

CONTINUED

Approximate pi(x) by truncating sensing attenuation

Discretize pi(x) using a grid 



COVERAGE CONTROL MISSION DEMO
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SOFTWARE DEMO OF COVERAGE CONTROL ALGORITHM: 
http://frontera.bu.edu/Applets/CoverageContr/index.html

No communication cost With communication cost

Sensing Range



SOME FINAL THOUGHTS…
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Small, cheap cooperating devices cannot handle complexity
⇒ we need DISTRIBUTED control !

Cooperating agents operate asynchronously
⇒ we need ASYNCHRONOUS control/optimization schemes

Wireless communication is alarmingly vulnerable to
security threats

Different views/aspects of “Cooperative Control” abound…
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