COOPERATIVE CONTROL AND OPTIMIZATION IN AN UNCERTAIN, ASYNCHRONOUS WIRELESS, NETWORKED WORLD

C. G. Cassandras

Division of Systems Engineering Center for Information and Systems Engineering Boston University

ACKNOWLEDGEMENTS:

PhD Students: Wei Li, Ning Xu, Minyi Zhong, Jianfeng Mao, Chen Yao, Yanfeng Geng Sponsors: NSF, AFOSR, ARO, ONR, DOE, Honeywell

- Christos G. Cassandras — CODES Lab. - Boston University

OUTLINE

Sensor Networks ("Earth's skin...")

Sensor Networks as Control Systems:

- Three functions: Coverage – Detection – Data Collection

> Coverage:

- Distributed Cooperative Optimization
- Emphasis on Event-Driven control
- Coverage + Data Collection

> Data Collection:

- Stochastic Multi-Traveling-Salesman Problem with Time-Varying City Rewards
- Cooperative Receding Horizon (CRH) Control

DEMOS: Applets and Movies

WHAT'S A SENSOR NETWORK ?

A NETWORK consisting of devices (sensors) that:

- ... communicate wirelessly
- ... are battery-powered
- ... may have different characteristics
- ... have limited processing capabilities
- ... have limited life
- ... often operate in noisy/adversarial environments
- monitor/control physical processes

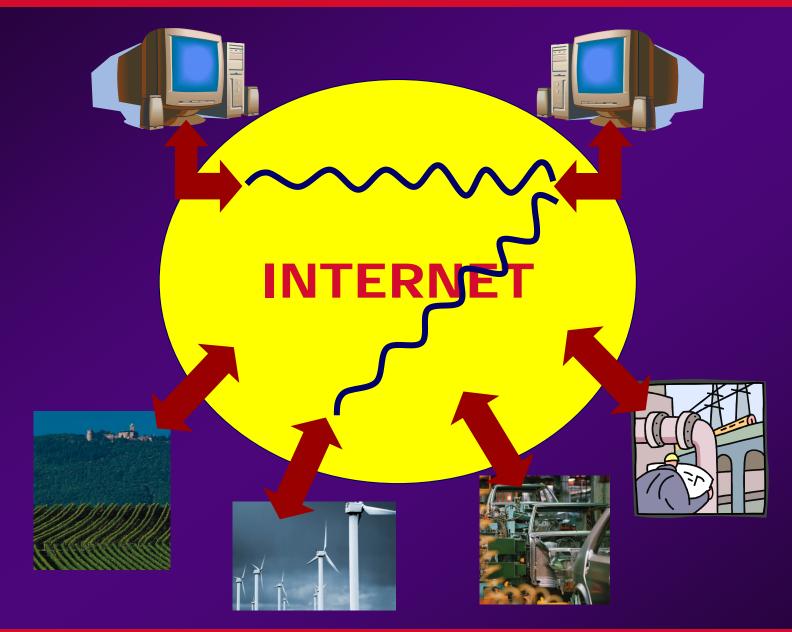
WHY ARE SENSOR NETWORKS EXCITING?

- They interact with the physical world
- They promise fascinating applications:
 - Smart Buildings (locate persons/objects, find closest resource, adjust environment, detect emergency conditions)
 - Smart Cities (smart parking, location-based services, traffic control)
 - Health monitoring
 - Security and military applications
 - Environmental monitoring
 - Inventory monitoring/replenishment (smart shelves)
 - Equipment condition monitoring, active maintenance (smart appliances)
 - Asset tracking and management (warehouses, ports)

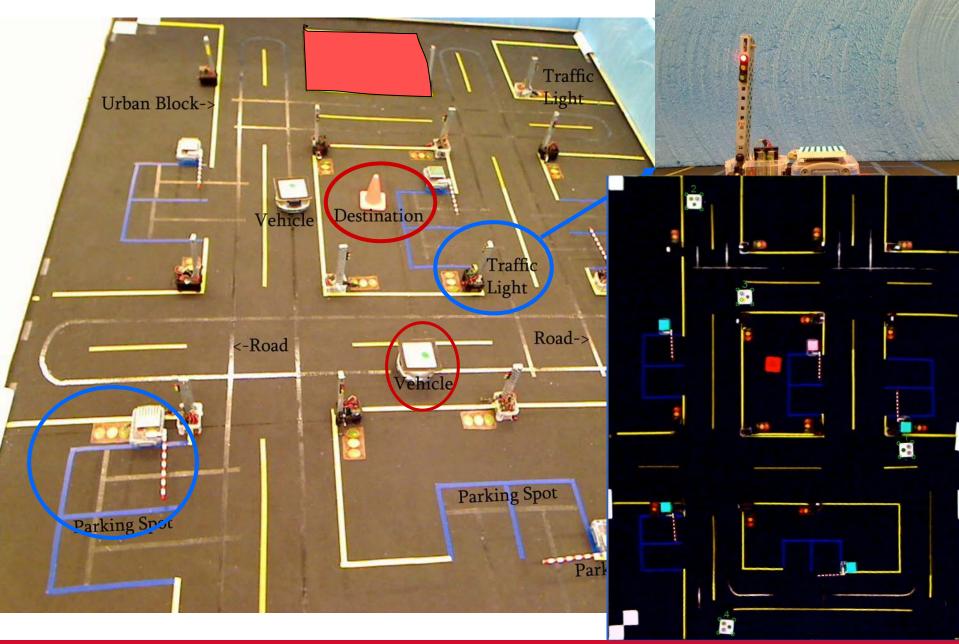
 They realize a convergence of the "3 Cs": Communication + Computing + Control

Christos G. Cassandras

CYBER-PHYSICAL SYSTEMS



INTELLIGENT PARKING TEST BED

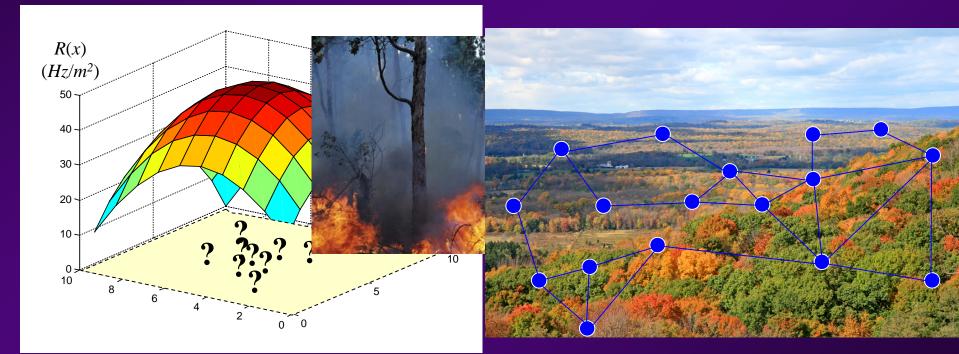


Christos G. Cassandras

MOTIVATIONAL PROBLEM: COVERAGE CONTROL

Deploy sensors to maximize "event" detection probability

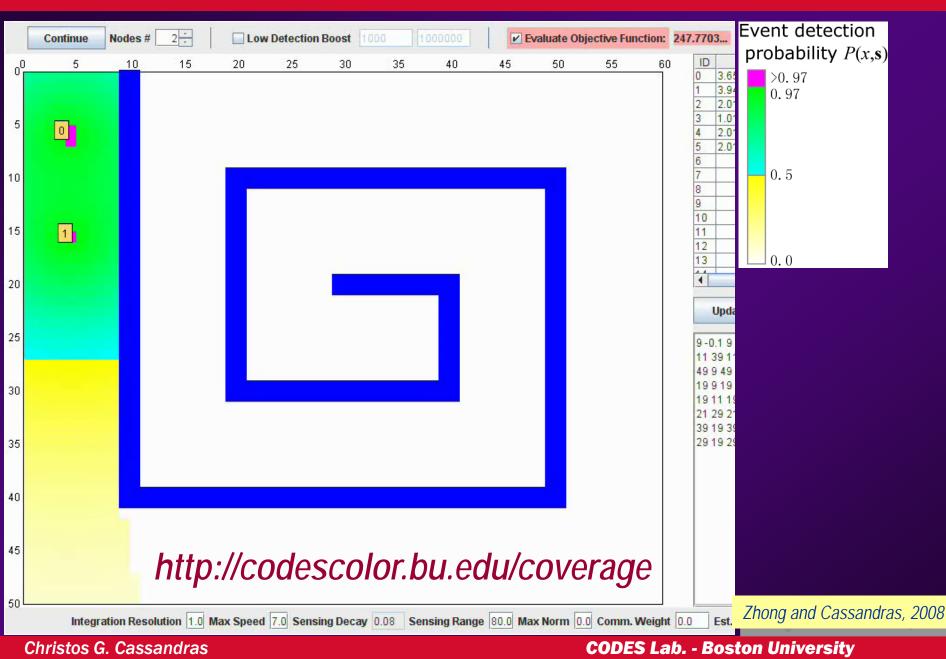
- unknown event locations
- event sources may be mobile
- sensors may be mobile



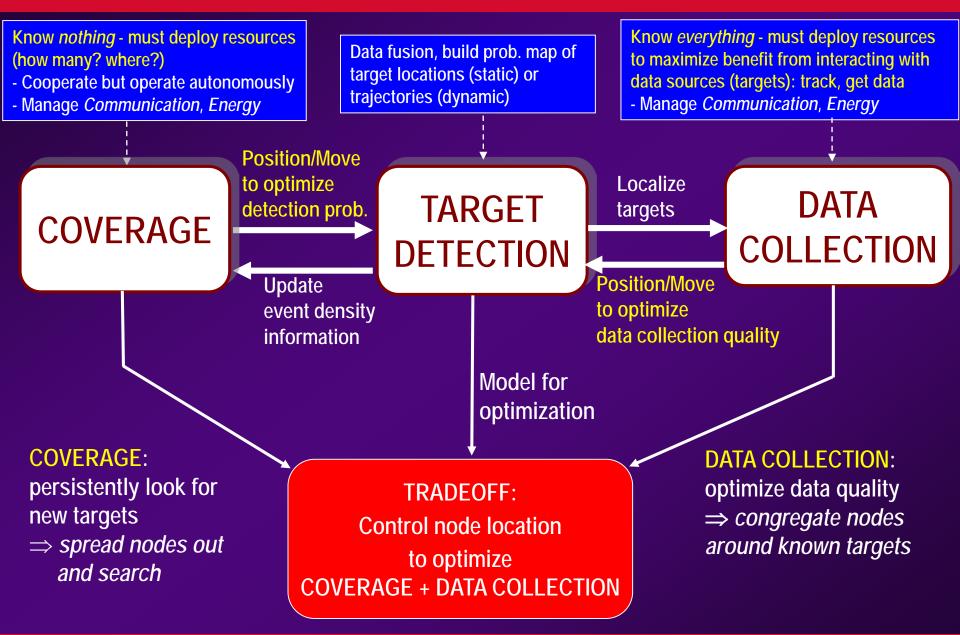
Perceived event density (data sources) over given region (mission space)

Christos G. Cassandras

OPTIMAL COVERAGE WITH OBSTACLES



SENSOR NETWORK AS A CONTROL SYSTEM



Christos G. Cassandras

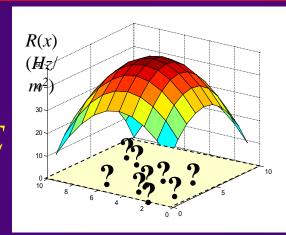
THE COVERAGE PROBLEM

COVERAGE: PROBLEM FORMULATION

- N mobile sensors, each located at $s_i \in \mathbb{R}^2$
- Data source at x emits signal with energy E
- Signal observed by sensor node *i* (at *s_i*)
- SENSING MODEL:

 $p_i(x, s_i) \equiv P[\text{Detected by } i | A(x), s_i]$ (A(x) = data source emits at x)

Sensing attenuation: $p_i(x, s_i)$ monotonically decreasing in $d_i(x) \equiv ||x - s_i||$



COVERAGE: PROBLEM FORMULATION

- Joint detection prob. assuming sensor independence $(s = [s_1, ..., s_N]$: node locations)

$$P(x, \mathbf{s}) = 1 - \prod_{i=1}^{N} \left[1 - p_i(x, s_i) \right]$$

• OBJECTIVE: Determine locations s = [s₁,...,s_N] to maximize total *Detection Probability*:

$$\max_{\mathbf{s}} \int_{\Omega} R(x) P(x, \mathbf{s}) dx$$

Perceived event density

Christos G. Cassandras

DISTRIBUTED COOPERATIVE SCHEME

Set

$$H(s_1, \dots, s_N) = \int_{\Omega} R(x) \left\{ 1 - \prod_{i=1}^N \left[1 - p_i(x) \right] \right\} dx$$

• Maximize $H(s_1,...,s_N)$ by forcing nodes to move using gradient information:

$$\frac{\partial H}{\partial s_k} = \int_{\Omega} R(x) \prod_{i=1, i \neq k}^{N} \left[1 - p_i(x) \right] \frac{\partial p_k(x)}{\partial d_k(x)} \frac{s_k - x}{d_k(x)} dx$$

$$s_i^{k+1} = s_i^k + \beta_k \frac{\partial H}{\partial s_i^k}$$

Desired displacement = $V \cdot \Delta t$

Christos G. Cassandras

DISTRIBUTED COOPERATIVE SCHEME

CONTINUED

$$\frac{\partial H}{\partial s_k} = \int_{\Omega} R(x) \prod_{i=1, i \neq k}^{N} \left[1 - p_i(x) \right] \frac{\partial p_k(x)}{\partial d_k(x)} \frac{s_k - x}{d_k(x)} dx$$

... has to be autonomously evaluated by each node so as to determine how to move to next position:

$$s_i^{k+1} = s_i^k + \beta_k \frac{\partial H}{\partial s_i^k}$$

> Use truncated $p_i(x) \Rightarrow \Omega$ replaced by node neighborhood

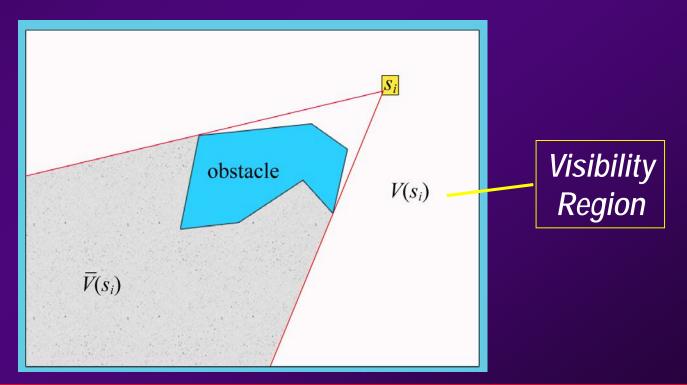
> Discretize $p_i(x)$ using a local grid

Cassandras and Li, 2005

EXTENSION 1: POLYGONAL OBSTACLES...

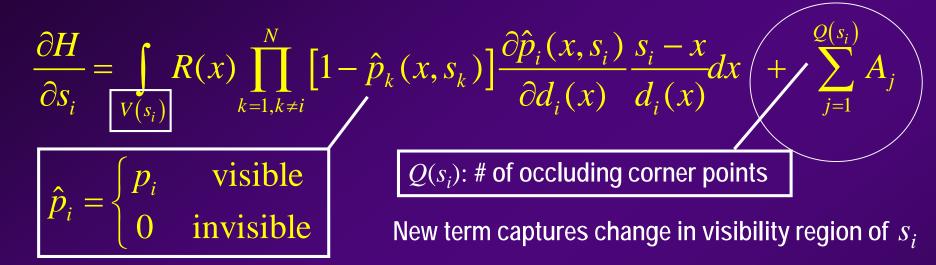
- Constrain the navigation of mobile nodes
- Interfere with sensing:

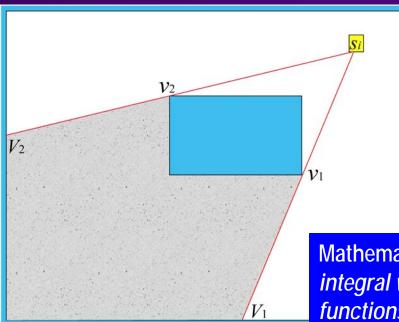
$$\hat{p}_i(x, s_i) = \begin{cases} p_i(x, s_i) & \text{if } x \text{ is visible from } s_i \\ 0 & \text{otherwise} \end{cases}$$

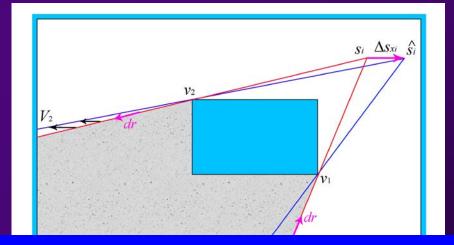


Christos G. Cassandras

GRADIENT CALCULATION WITH OBSTACLES





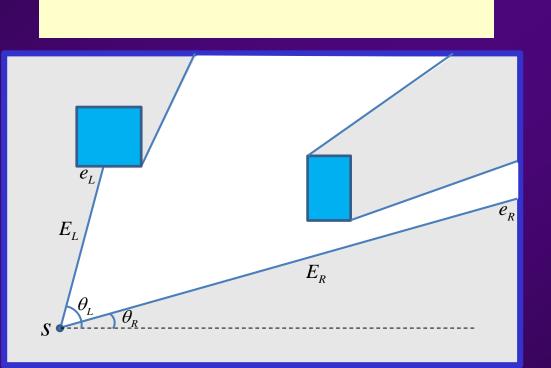


Mathematically: use extension of Leibnitz rule for differentiating integral where both integrand and integration domain are functions of the control variable

Christos G. Cassandras

EXTENSION 2: LIMITED FIELD OF VIEW...

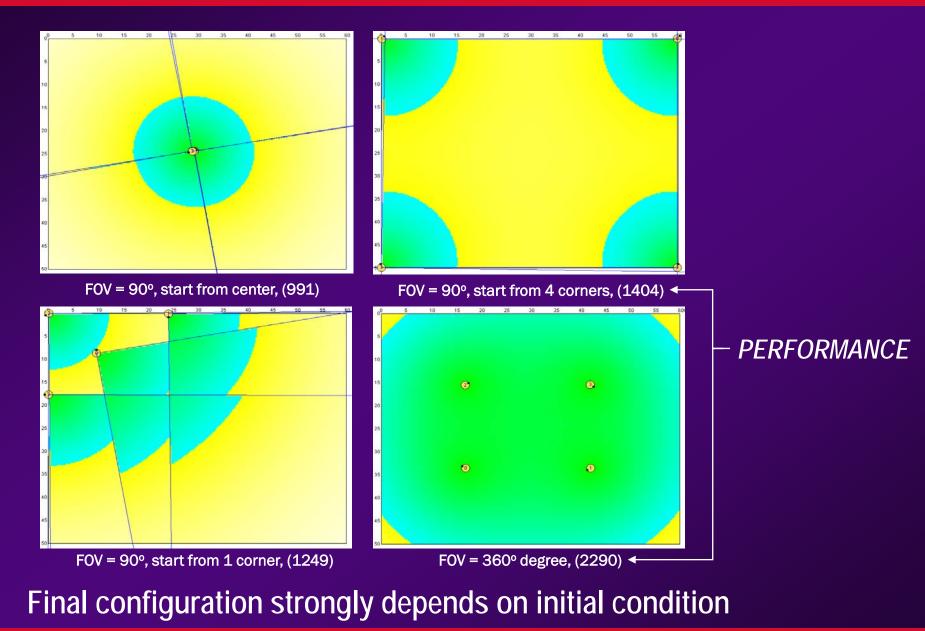
- Sensors (e.g., cameras) may have limited field of view (FOV)
- Modeled as a sensing cone with a fixed aperture
- New control variable at each node: FOV direction θ_i



 Edges of sensing cone introduce discontinuities similar to those introduced by obstacles ⇒ similar gradient evaluation

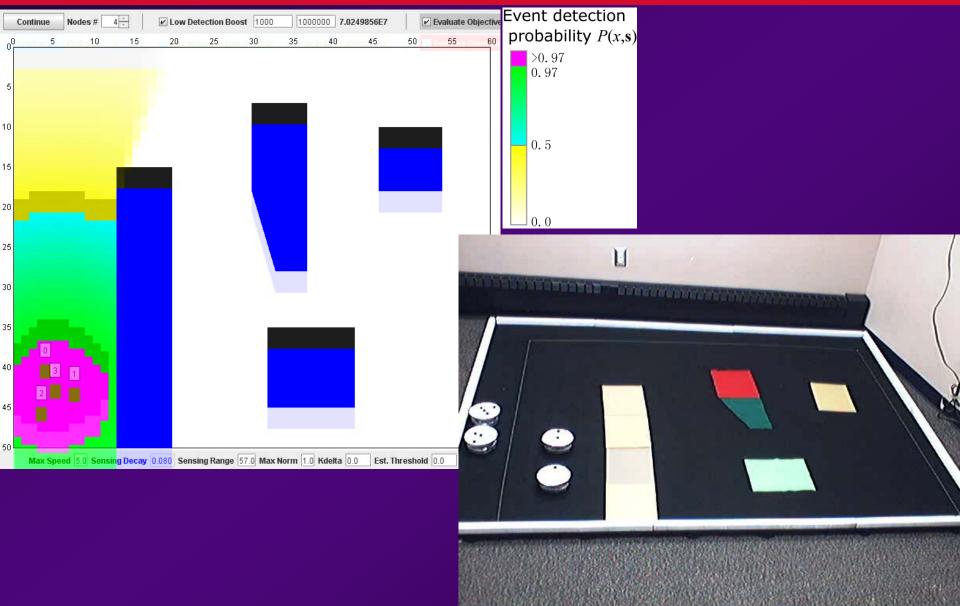
Christos G. Cassandras

LIMITED FIELD OF VIEW - EXAMPLES



Christos G. Cassandras

DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH OBSTACLES – SIMULATED AND REAL



Christos G. Cassandras

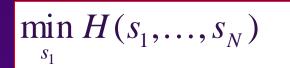
THE BIGGER PICTURE: DISTRIBUTED OPTIMIZATION

DISTRIBUTED COOPERATIVE OPTIMIZATION

N system components (processors, agents, vehicles, nodes), one common objective:

$$\min_{s_1,\ldots,s_N} H(s_1,\ldots,s_N)$$

s.t. constraints on each s_i



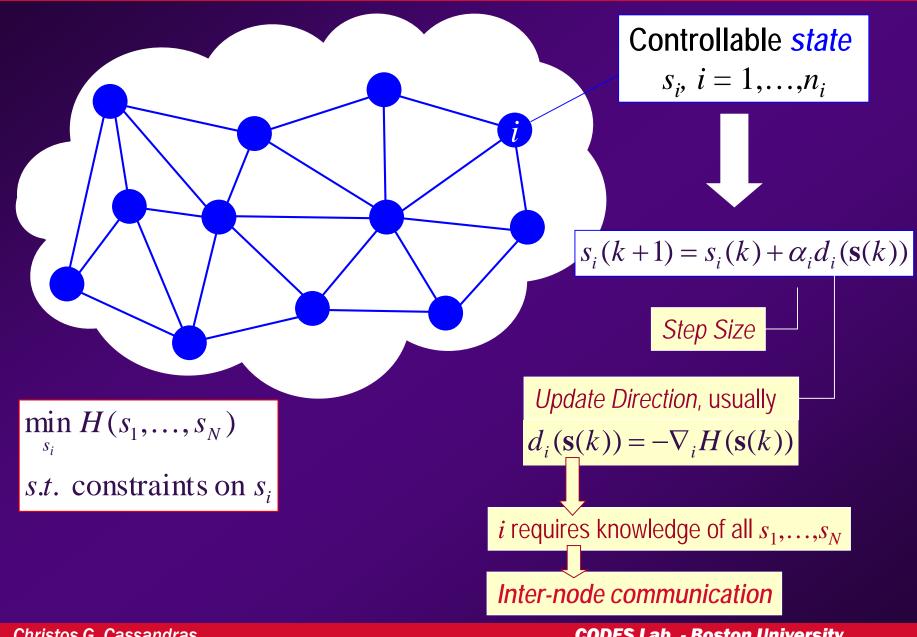
s.t. constraints on s_1

$$\min_{s_N} H(s_1, \dots, s_N)$$

s.t. constraints on s_N

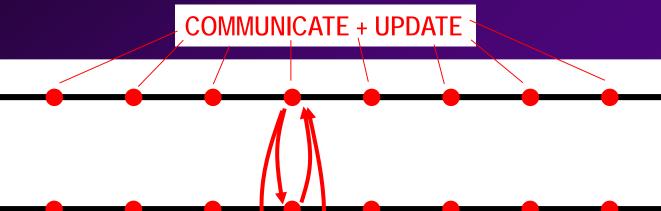
Christos G. Cassandras

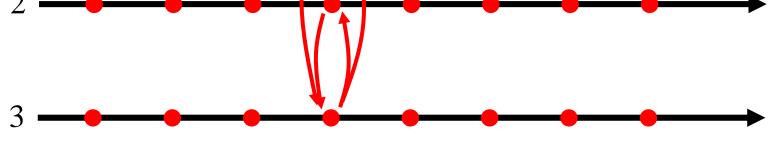
DISTRIBUTED COOPERATIVE OPTIMIZATION



Christos G. Cassandras

SYNCHRONIZED (TIME-DRIVEN) COOPERATION

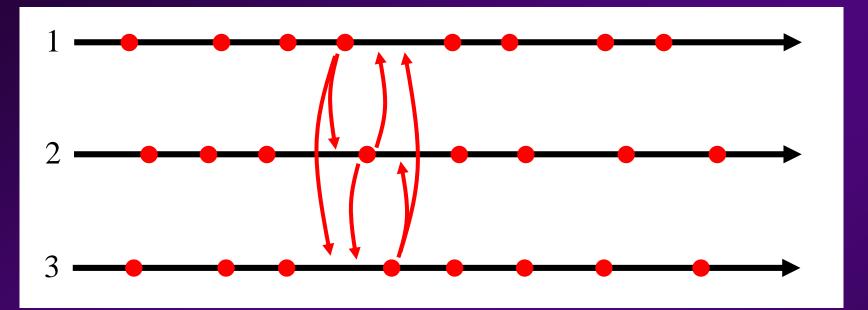




Drawbacks:

- Excessive communication (critical in wireless settings!)
- Faster nodes have to wait for slower ones
- Clock synchronization infeasible
- Bandwidth limitations
- Security risks

ASYNCHRONOUS COOPERATION



Nodes not synchronized, delayed information used

Update frequency for each node is bounded

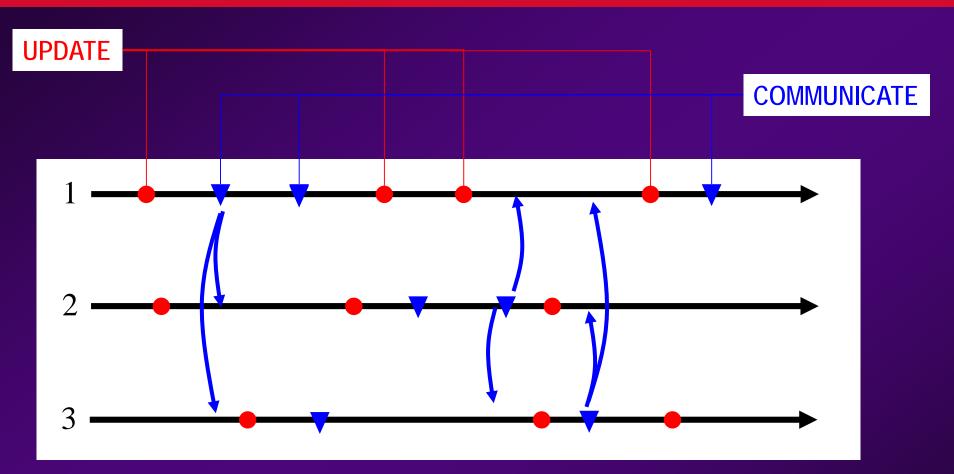
technical conditions

 $\Rightarrow \frac{s_i(k+1) = s_i(k) + \alpha_i d_i(\mathbf{s}(k))}{\text{converges}}$

Bertsekas and Tsitsiklis, 1997

Christos G. Cassandras

ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION



UPDATE at *i*: locally determined, arbitrary (possibly periodic)
 COMMUNICATE from *i*: only when absolutely necessary

Christos G. Cassandras

HOW MUCH COMMUNICATION FOR OPTIMAL COOPERATION ?

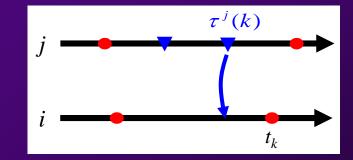
WHEN SHOULD A NODE COMMUNICATE?

Node state at any time $t : x_i(t)$ Node state at t_k : $s_i(k)$ \Rightarrow $s_i(k) = x_i(t_k)$

AT UPDATE TIME t_k , $k \in C^i$: $s_j^i(k)$: node j state estimated by node i

Estimate examples:

 $\Rightarrow s_j^i(k) = x_j(\tau^j(k))$ Most recent value



$$\Rightarrow s_j^i(k) = x_j(\tau^j(k)) + \frac{t_k - \tau^j(k)}{\Delta_j} \cdot \alpha_i \cdot d_j(x_j(\tau^j(k)))$$
 Linear prediction

Christos G. Cassandras

WHEN SHOULD A NODE COMMUNICATE?

AT ANY TIME *t* :

- $x_i^j(t)$: node *i* state estimated by node *j*
- If node *i* knows how *j* estimates its state, then it can evaluate $x_i^j(t)$
- Node *i* uses
 - its own true state, $x_i(t)$
 - the estimate that j uses, $x_i^j(t)$

... and evaluates an ERROR FUNCTION $g(x_i(t), x_i^j(t))$

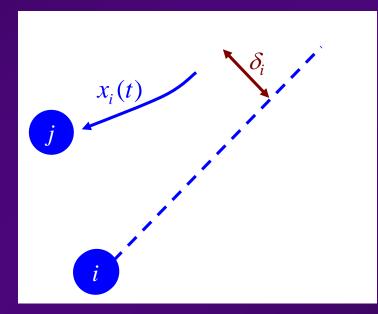
Error Function examples:
$$\left\|x_{i}(t) - x_{i}^{j}(t)\right\|_{1}$$
, $\left\|x_{i}(t) - x_{i}^{j}(t)\right\|_{2}$

Christos G. Cassandras

WHEN SHOULD A NODE COMMUNICATE?

Compare ERROR FUNCTION $g(x_i(t), x_i^j(t))$ to THRESHOLD δ_i

Node *i* communicates its state to node *j* only when it detects that its *true state* $x_i(t)$ deviates from *j*' *estimate of it* $x_i^j(t)$ so that $g(x_i(t), x_i^j(t)) \ge \delta_i$



⇒ *Event-Driven* Control

CONVERGENCE

Asynchronous distributed state update process at each *i*:

$$s_i(k+1) = s_i(k) + \alpha \cdot d_i(\mathbf{s}^i(k))$$

$$\delta_i(k) = \begin{cases} K_{\delta} \| d_i(\mathbf{s}^i(k) \| & \text{if } k \in C^i \\ \delta_i(k-1) & \text{otherwise} \end{cases}$$

Estimates of other nodes, evaluated by node *i*

THEOREM: Under certain conditions, there exist positive constants α and K_{δ} such that

 $\lim_{k\to\infty}\nabla H(\mathbf{s}(k))=0$

NOTE: Analysis uses framework based on [Bertsekas and Tsitsiklis, 1997]

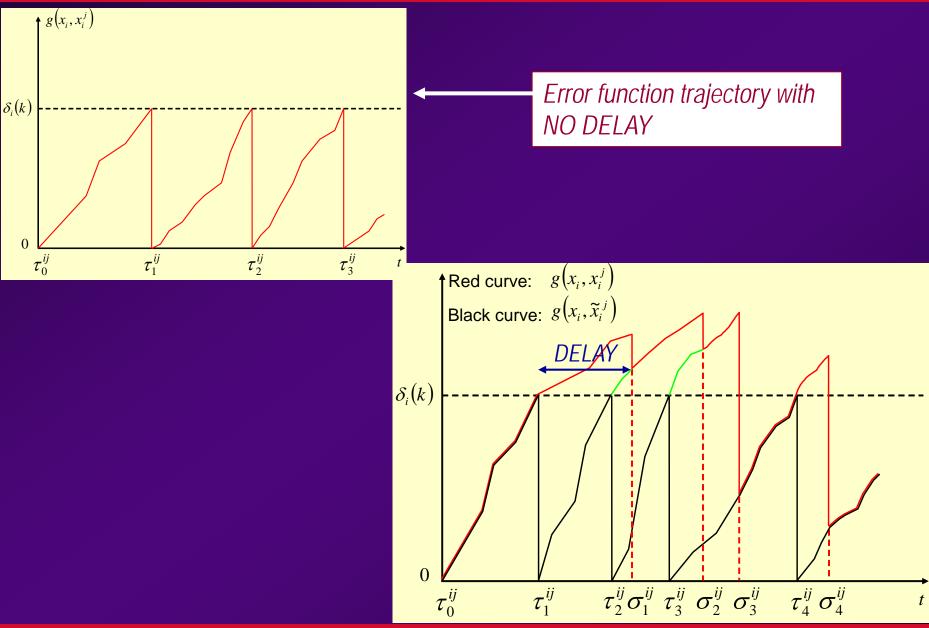
Zhong and Cassandras, 2009

INTERPRETATION:

Event-driven cooperation achievable with minimal communication requirements \Rightarrow *energy savings*

Christos G. Cassandras

COONVERGENCE WHEN DELAYS ARE PRESENT



Christos G. Cassandras

COONVERGENCE WHEN DELAYS ARE PRESENT

Add a boundedness assumption:

ASSUMPTION: There exists a non-negative integer *D* such that if a message is sent before t_{k-D} from node *i* to node *j*, it will be received before t_k .

INTERPRETATION: at most **D** state update events can occur between a node sending a message and all destination nodes receiving this message.

THEOREM: Under certain conditions, there exist positive constants α and K_{δ} such that

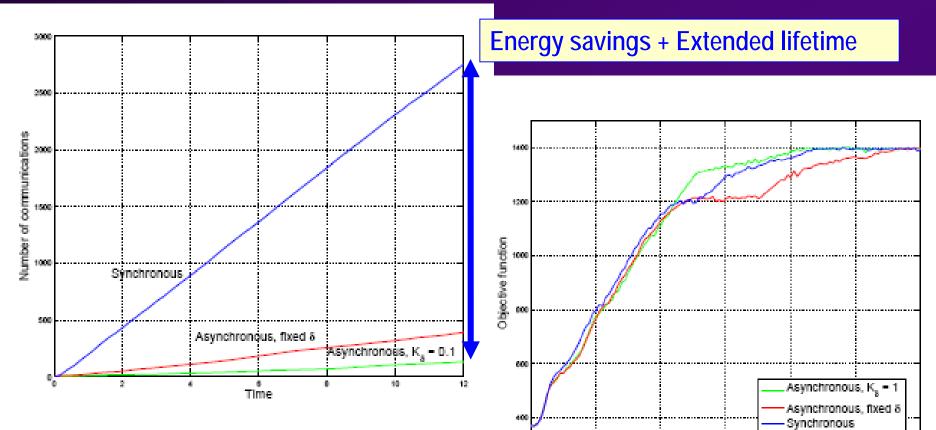
 $\lim_{k\to\infty}\nabla H(\mathbf{s}(k))=0$

NOTE: The requirements on α and K_{δ} depend on **D** and they are tighter.

Zhong and Cassandras, 2009

Christos G. Cassandras

SYNCHRONOUS v ASYNCHRONOUS OPTIMAL COVERAGE PERFORMANCE



SYNCHRONOUS v ASYNCHRONOUS:

No. of communication events for a deployment problem *with obstacles*

SYNCHRONOUS v ASYNCHRONOUS:

Time

10

12

Achieving optimality in a problem *with obstacles*

 \mathbb{R}^{2}

Christos G. Cassandras

THE DATA COLLECTION PROBLEM

COVERAGE + DATA COLLECTION

Recall tradeoff:

COVERAGE: persistently look for new targets ⇒ spread nodes out

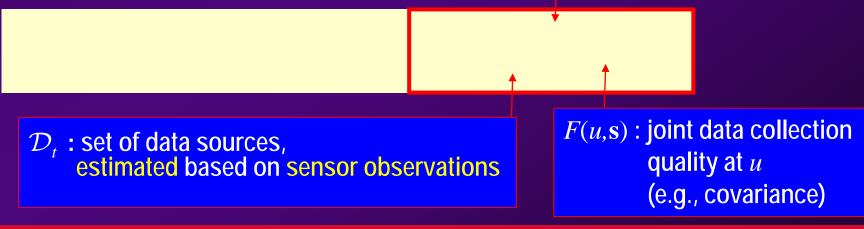
DATA COLLECTION: optimize data quality ⇒ congregate nodes around known targets

MODIFIED DISTRIBUTED OPTIMIZATION OBJECTIVE:

collect info from detected data sources (targets) while maintaining a good coverage to detect future events

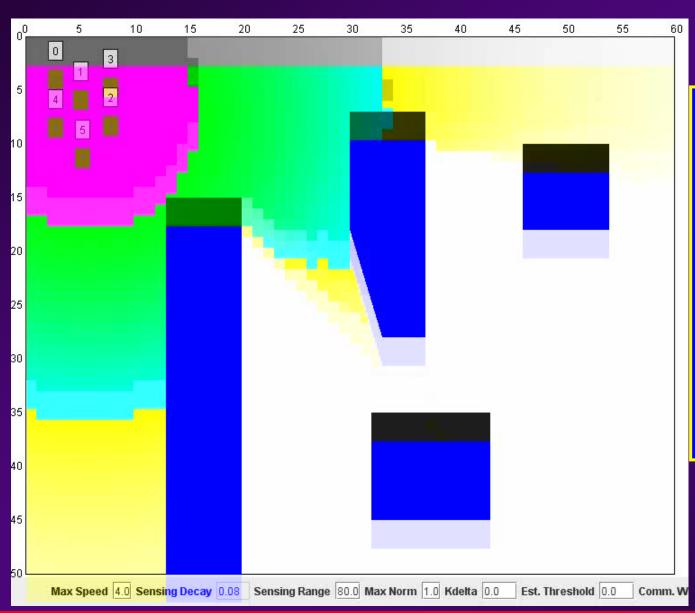
S(u): data source value

CODES Lab. - Boston University



Christos G. Cassandras

DEMO: REACTING TO EVENT DETECTION



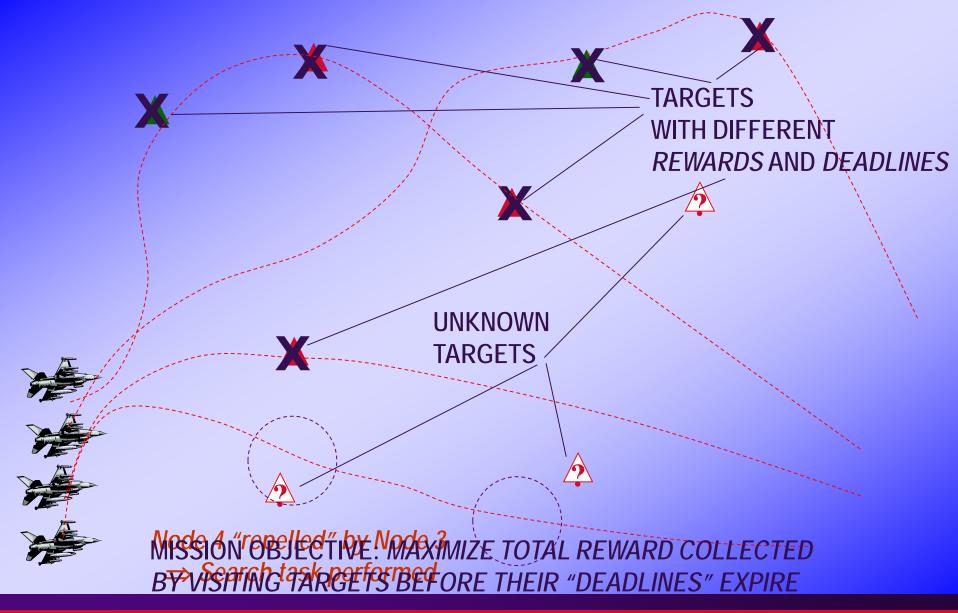
Important to note:

There is no external control causing this behavior. Algorithm includes tracking functionality automatically

Christos G. Cassandras

DATA COLLECTION: THE REWARD MAXIMIZATION PROBLEM

REWARD MAXIMIZATION MISSION



Christos G. Cassandras

CONTINUED

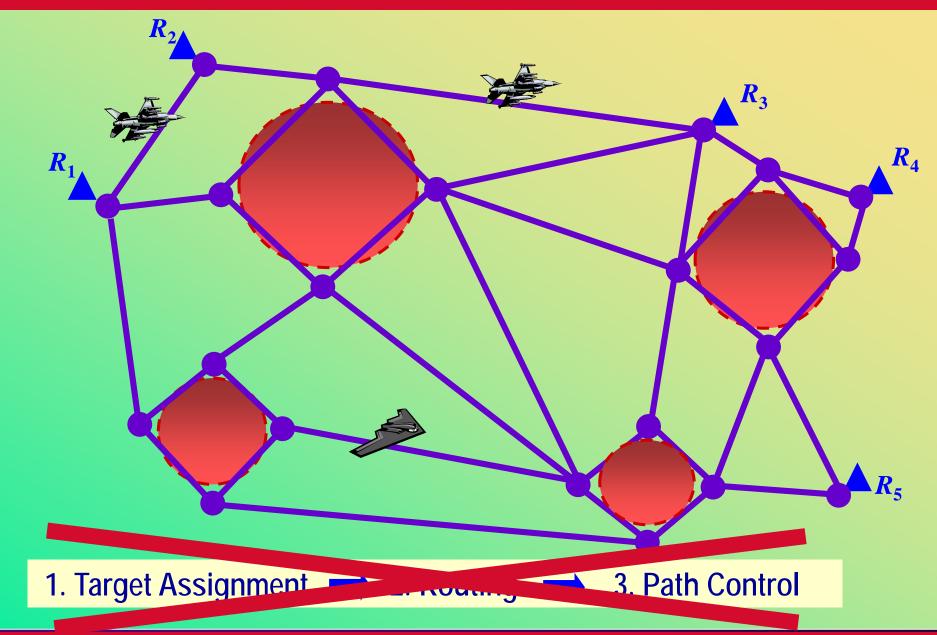
This is like the notorious TRAVELING SALESMAN problem, except that...

> ... there are multiple (cooperating) salesmen

> ... there are deadlines + time-varying rewards

environment is stochastic (nodes may fail, threats damage nodes, etc.)

COMBINATORIAL + STOCHASTIC COMPLEXITY



Christos G. Cassandras

THE BIGGER PICTURE: MANAGING UNCERTAINTY

UNCERTAINTY: CONTRAST TWO APPROACHES

ESTIMATE-AND-PLAN

VS

 Decisions planned ahead
 Need accurate stochastic models
 Curse of dimensionality

Dynamic Programming (DP)Markov Decision Processes (MDP)

HEDGE-AND-REACT

Delay decisions until last possible instant
No (detailed) stochastic model
Simpler opt. problems

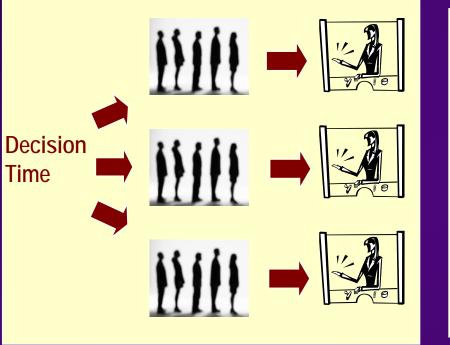
Receding Horizon Control (RHC)
Model Predictive Control (MPC)

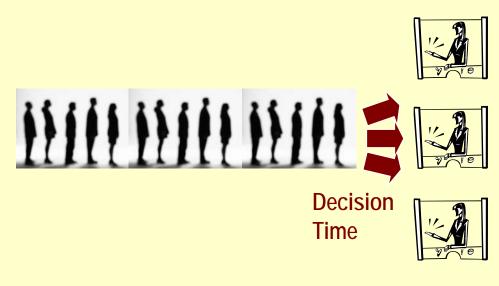
UNCERTAINTY: CONTRAST TWO APPROACHES

VS

ESTIMATE-AND-PLAN

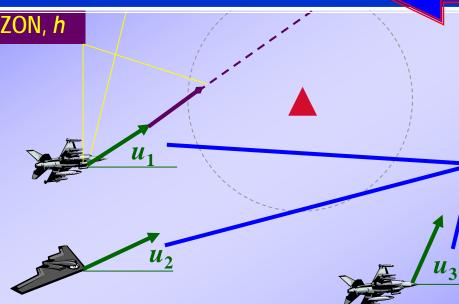
HEDGE-AND-REACT

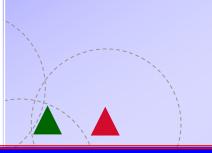




COOPERATIVE RECEDING HORIZON (CRH) CONTROL: MAIN IDEA

- Do not attempt to assign nodes to targets
- Cooperatively steer nodes towards "high expected reward" regions
- Repeat process periodically/on-event
- Worry about final node-target assignment at the last possible instant





Turns out nodes converge to targets on their own! Solve optimization problem by selecting all u_i to maximize total expected rewards over H MAIN IDEA IN CRH APPROACH: Replace complex *Discrete Stochastic Optimization* problem by a sequence of simpler *Continuous Optimization* problems

But how do we guarantee that nodes ultimately head for the desired DISCRETE TARGET POINTS?

• TARGETS: y_i • NODES: x_j

DEFINITION: Node trajectory $\mathbf{x}(t) = [x_1(t), \dots, x_M(t)]$ generated by a controller is *stationary*, if there exists some $t_V < \infty$, such that $||x_j(t_v) - y_i|| \le s_i$ for some $i = 1, \dots, N, j = 1, \dots, M$.

Target Size

QUESTION: Under what conditions is a CRH-generated trajectory stationary?

MAIN STABILITY RESULT

Local minima of objective function J(x): $x^{l} = (x_{1}^{l}, ..., x_{M}^{l}) \in \mathbb{R}^{2M}$, l = 1, ..., L

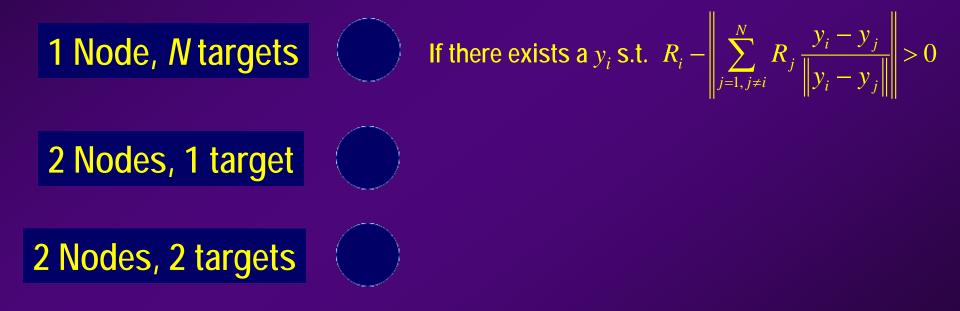
Vector of node positions at *k*th iteration of CRH controller: \mathbf{x}_k

Theorem: Suppose
$$H_k = \min_{i,j} d_{ij}(t_k)$$
.
If, for all $l = 1, ..., L$, $\chi_j^l = y_i$ for some $i = 1, ..., N$, $j = 1, ..., M$,
then $J(\mathbf{x}_k) - J(\mathbf{x}_{k+1}) > b$ ($b > 0$ is a constant).

If all local minima coincide with targets, the CRH-generated trajectory is stationary

QUESTION:

When do all local minima coincide with target points?



OTHER ISSUES

Local optima in the CRH optimization problem

Oscillatory node behavior (instabilities)

Additional path constraints, e.g., rendez-vous at targets

Does CRH control generate optimal assignments?

Christos G. Cassandras

BOSTON UNIVERSITY TEST BEDS

RoboticUrban-like Environment (RULE)

CRH Test Bed with autonomous robots

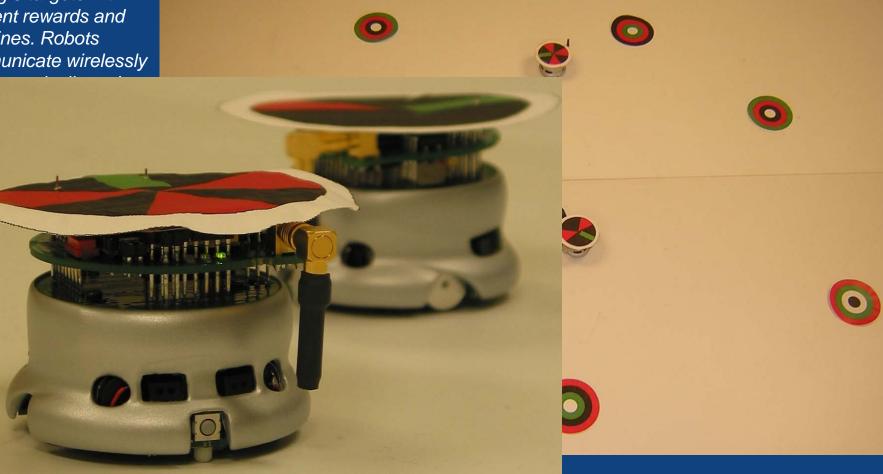
New autonomous robots

Christos G. Cassandras

REWARD MAXIMIZATION DEMO

MOVIES OF SUCH PROBLEMS WITH SMALL ROBOTS:

3 Khepera robots executing mission: visiting 8 targets with different rewards and deadlines. Robots communicate wirelessly http://codescolor.bu.edu/multimedia.html



Christos G. Cassandras

BOSTON UNIVERSITY ROBOTIC URBAN TEST BED

SUMMARY, RESEARCH DIRECTIONS

- Small, cheap cooperating devices cannot handle complexity
 ⇒ we need DISTRIBUTED control and optim. algorithms
- Cooperating agents operate autonomously (asynchronously)
 ⇒ we need ASYNCHRONOUS (EVENT-DRIVEN) control/optimization schemes
- Too much communication kills node energy sources
 ⇒ communicate ONLY when necessary
 ⇒ we need EVENT-DRIVEN control/optimization schemes

Networks grow large, sensing tasks grow large
 we need SCALABLE control and optim. algorithms

THRESHOLD PROCESS

$$K_{\delta} > 0$$

$$Update Direction, usually$$

$$d_{i}(\mathbf{s}^{i}(k)) = -\nabla_{i}H(\mathbf{s}^{i}(k))$$

$$\delta_{i}(k) = \begin{cases} K_{\delta} \| d_{i}(\mathbf{s}^{i}(k) \| & \text{if } k \in C^{i} \\ \delta_{i}(k-1) & \text{otherwise} \end{cases}$$

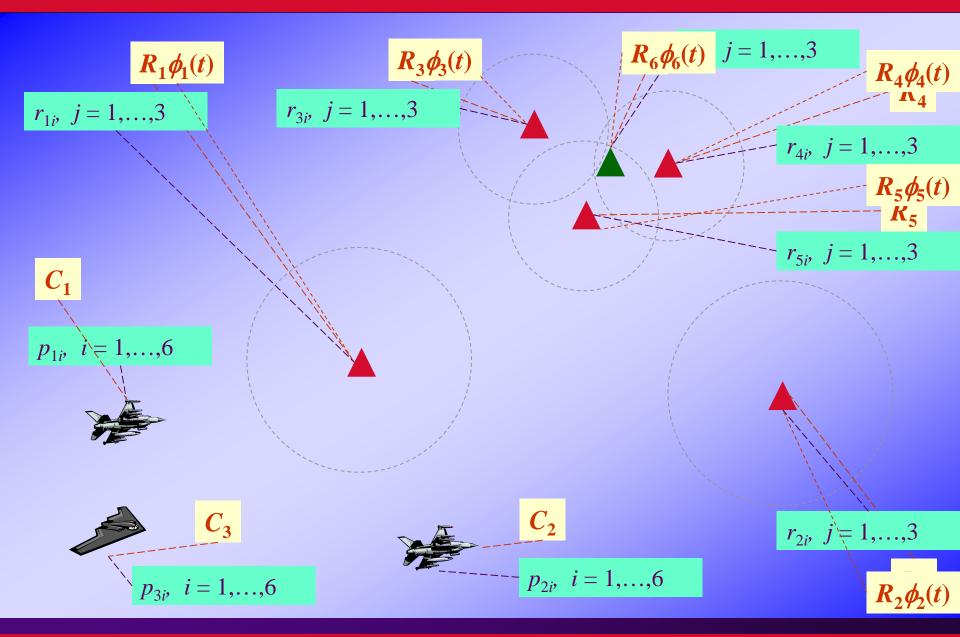
$$Intuition:$$

$$near convertioner (small d_{i}(\mathbf{s}^{i}(k)))$$

Intuition: near convergence (small $d_i(\mathbf{s}^i(k))$), better estimates are needed

$$\delta_i(0) = K_{\delta} \left\| d_i(\mathbf{s}^i(0)) \right\|$$

COOPERATIVE REWARD MAXIMIZATION PROBLEM



Christos G. Cassandras

SOLUTION APPROACHES

Stochastic Dynamic Programming – Wohletz et al, 2001 Extremely complex...

> Functional Decomposition:

- Dynamic Resource Allocation Castanon and Wohletz, 2002
- Assignment Problems through Mixed Integer Linear Programming – Bellingham et al, 2002
 Combinatorially complex...
- Path Planning Hu and Sastry, 2001, Lian and Murray 2002, Gazi and Passino, 2002, Bachmayer and Leonard, 2002

CRH CONTROL PROBLEM FORMULATION

- Target positions (i = 1, ..., N): $y_i \in \mathbb{R}^2$
- Node dynamics (j = 1, ..., M):

 $u_i(t)$

• State: $x_j(t) \in \mathbb{R}^2$

Control:

position of *j*th node at time *t* Node heading at time *t*

$$\dot{x}_{j}(t) = V_{j} \begin{bmatrix} \cos u_{j}(t) \\ \sin u_{j}(t) \end{bmatrix}, \quad x_{j}(0) = x_{j}^{0}$$

 H_{ν}

- At *k*th iteration, time t_k (k=1,2,...):
 - Planning Horizon:

• Node position at time $t_k + H_k$:

 $x_j(t_k + H_k) = x_j(t_k) + \dot{x}_j(t_k)H_k$

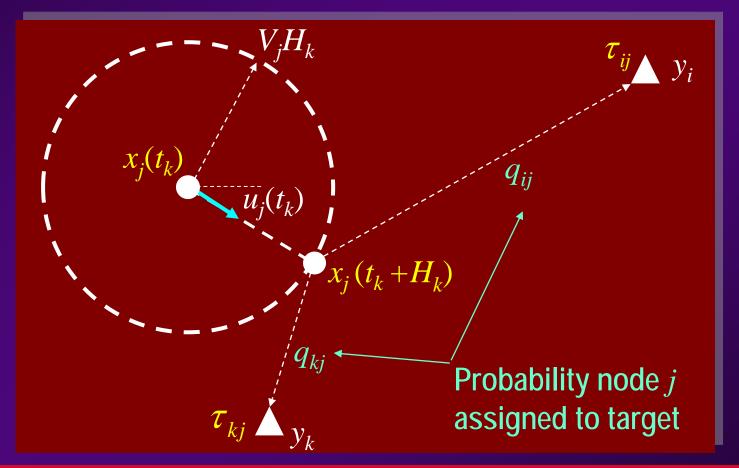
RH PROBLEM FORMULATION

CONTINUED

• At *kth* iteration (*k*=1,2,...):

Earliest time node *j* can reach target *i* under control $u_i(t_k)$:

 $\tau_{ij}(u_j(t_k), t_k) = (t_k + H_k) + ||x_j(t_k + H_k) - y_i||/V_j|$

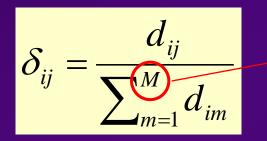


Christos G. Cassandras

THE FUNCTION q_{ij} [TARGET ASSIGNMENT FUNCTION]

• Agent-to-target distance: $d_{ij} = x_j - y_i$

Relative distance:



or: b closest agents to j only

• Target assignment function $q_{ij}(\delta_{ij})$:

Monotonically non-increasing and s.t.

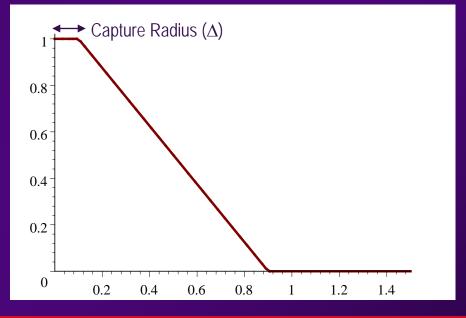
$$q_{ij}(0) = 1, \quad q_{ij}(1) = 0$$

Christos G. Cassandras

THE FUNCTION q_{ij}

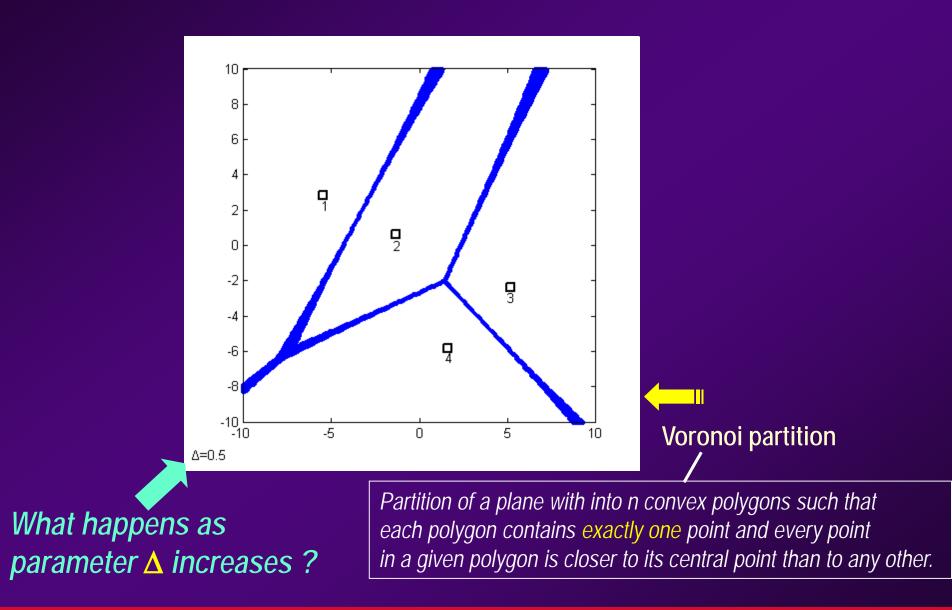
• A example of q_{ij} function (M=2):

$$q_{ij}(\delta_{ij}) = \begin{cases} 1 & \text{if } \delta_{ij} \leq \Delta \\ \frac{1}{1-2\Delta} \left[(1-\Delta) - \delta_{ij} \right] & \text{if } \Delta < \delta_{ij} \leq 1-\Delta \\ 0 & \text{otherwise} \end{cases}$$



Christos G. Cassandras

THE FUNCTION q_{ij}



Christos G. Cassandras

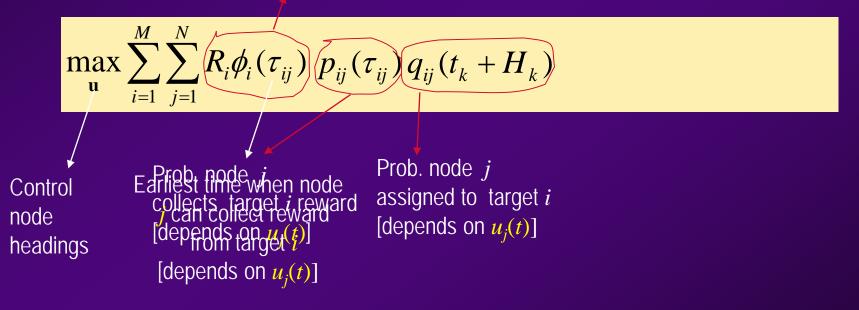
CRH PROBLEM FORMULATION

CONTINUED

Objective at kth iteration:

Maximize **EXPECTED REWARD** over horizon H_k

Target *i* value attainable by node *j* [depends on $u_j(t)$]



PLANNING AND ACTION HORIZONS

PLANNING Horizon *H*(*t*):

$$H(t) = d_{\min}(t) \equiv \min_{i,j} d_{ij}(t)$$

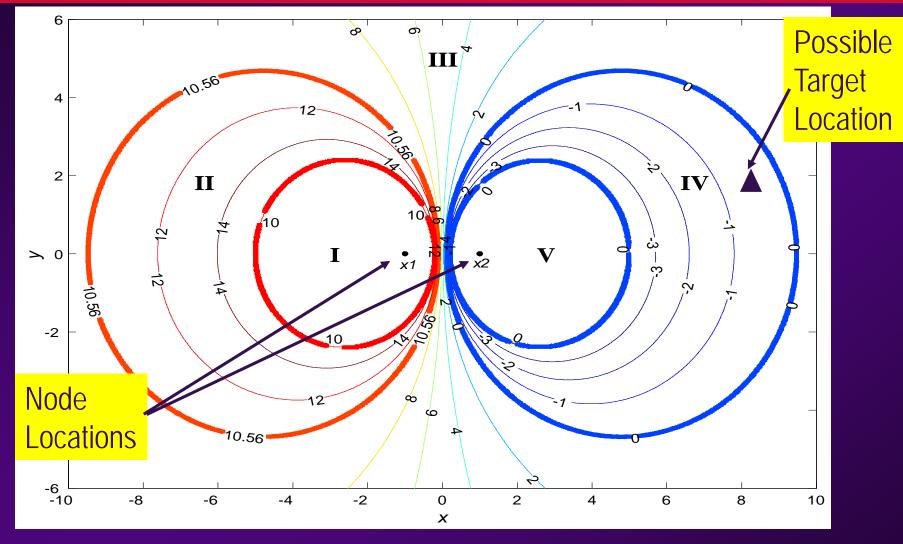
ACTION Horizon *h*(*t*):

$$h(t) = \alpha_H + \beta_H H(t), \ \alpha_H \ge 0, \ 0 \le \beta_H \le 1$$

OR: Whenever next EVENT occurs

Christos G. Cassandras

2-NODE CASE – DYNAMIC PARTITIONING



II: Only node 1 goes to target

III: Both nodes go to target

IV: Only node 2 goes to target (1 is repelled !)

Christos G. Cassandras