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OUTLINE 
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 Sensor Networks (“Earth’s skin…”)

 Sensor Networks as Control Systems:
- Three functions: Coverage – Detection – Data Collection

 Coverage:
- Distributed Cooperative Optimization
- Emphasis on Event-Driven control

 Coverage + Data Collection

 Data Collection:
- Stochastic Multi-Traveling-Salesman Problem
with Time-Varying City Rewards

- Cooperative Receding Horizon (CRH) Control

 DEMOS: Applets and Movies



WHAT’S A SENSOR NETWORK ?
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A NETWORK consisting 
of devices (sensors) that:
… communicate wirelessly
… are battery-powered
… may have different 

characteristics
… have limited processing   

capabilities
… have limited life
… often operate in 

noisy/adversarial environments
… monitor/control physical 

processes



WHY ARE SENSOR NETWORKS EXCITING?
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 They interact with the physical world
 They promise fascinating applications:

- Smart Buildings (locate persons/objects, find closest
resource, adjust environment, detect emergency conditions)

- Smart Cities (smart parking, location-based services, traffic control)
- Health monitoring
- Security and military applications
- Environmental monitoring
- Inventory monitoring/replenishment (smart shelves)
- Equipment condition monitoring, active maintenance (smart appliances)
- Asset tracking and management (warehouses, ports)

 They realize a convergence of the “3 Cs”:

Communication + Computing + Control 



CYBER-PHYSICAL SYSTEMS
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INTERNET



INTELLIGENT PARKING TEST BED

Christos G. Cassandras CODES Lab. - Boston University



Christos G. Cassandras CODES Lab. - Boston University

MOTIVATIONAL PROBLEM: COVERAGE CONTROL

Deploy sensors to maximize “event” detection probability 
– unknown event locations
– event sources may be mobile
– sensors may be mobile 

Perceived event density (data sources) over given region (mission space)
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• Meguerdichian et al, IEEE INFOCOM, 2001
• Cortes et al, IEEE Trans. on Robotics and 

Automation, 2004
• Cassandras and Li, Eur. J. of Control, 2005
• Ganguli et al, American Control Conf., 2006 
• Hussein and Stipanovic, American Control 

Conf., 2007
• Hokayem et al, American Control Conf., 2007



OPTIMAL COVERAGE WITH OBSTACLES
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http://codescolor.bu.edu/coverage
Zhong and Cassandras, 2008



SENSOR NETWORK AS A CONTROL SYSTEM

Position/Move
to optimize
detection prob. TARGET

DETECTION
DATA

COLLECTION

Localize
targets

Update 
event density
information

Position/Move
to optimize
data collection quality

Know nothing - must deploy resources 
(how many? where?)
- Cooperate but operate autonomously
- Manage Communication, Energy

COVERAGE:
persistently look for
new targets 
⇒ spread nodes out

and search

DATA COLLECTION:
optimize data quality
⇒ congregate nodes 
around known targets
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Model for 
optimization

COVERAGE

Data fusion, build prob. map of
target locations (static) or 
trajectories (dynamic)

Know everything - must deploy resources
to maximize benefit from interacting with 
data sources (targets): track, get data
- Manage Communication, Energy

TRADEOFF:
Control node location

to optimize
COVERAGE + DATA COLLECTION



THE COVERAGE
PROBLEM



COVERAGE: PROBLEM FORMULATION

 Sensing attenuation: 
pi(x, si) monotonically decreasing in di(x) ≡ ||x - si||

 Data source at x emits signal with energy E

 N mobile sensors, each located at si∈R2

 Signal observed by sensor node i (at si )

 SENSING MODEL: 
]),(|by  Detected[),( iii sxAiPsxp ≡

( A(x) = data source emits at x )
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 Joint detection prob.  assuming sensor independence
( s = [s1,…,sN] : node locations)                                                       

[ ]∏
=

−−=
N

i
ii sxpxP
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),(11),( s

 OBJECTIVE: Determine locations s = [s1,…,sN] to 
maximize total Detection Probability:

 ),()(max dxxPxR∫
Ω

s
s

COVERAGE: PROBLEM FORMULATION
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Perceived event density

Event sensing probability



CONTINUEDDISTRIBUTED COOPERATIVE SCHEME

 Set
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 Maximize H(s1,…,sN) by forcing nodes to move using 
gradient information:

[ ] dx
xd
xs

xd
xpxpxR

s
H

k

k

k

k
N

kii
i

k
∫ ∏
Ω ≠=

−
∂
∂

−=
∂
∂

)()(
)()(1)(

,1

k
i

k
k
i

k
i s

Hss
∂
∂

+=+ β1
Desired displacement = V·∆t



CONTINUEDDISTRIBUTED COOPERATIVE SCHEME

… has to be autonomously evaluated by each node so 
as to determine how to move to next position:

CONTINUED

 Use truncated pi(x) ⇒ Ω replaced by node neighborhood

 Discretize pi(x) using a local grid 
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Cassandras and Li, 2005
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CONTINUEDEXTENSION 1: POLYGONAL OBSTACLES…

• Constrain the navigation of mobile nodes

• Interfere with sensing:
( , ) if  is visible from 

ˆ ( , )
0 otherwise 

i i i
i i

p x s x s
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= 

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Visibility
Region



CONTINUEDGRADIENT CALCULATION WITH OBSTACLES
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Q(si): # of occluding corner points

Mathematically: use extension of Leibnitz rule for differentiating 
integral where both integrand and integration domain are 
functions of the control variable



• Sensors (e.g., cameras) may have limited field of view (FOV)
• Modeled as a sensing cone with a fixed aperture
• New control variable at each node: FOV direction θi

• Edges of sensing cone introduce discontinuities similar to those 
introduced by obstacles ⇒ similar gradient evaluation

Rθ

Le

Re
LE

RE

s
Lθ

EXTENSION 2: LIMITED FIELD OF VIEW…
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LIMITED FIELD OF VIEW - EXAMPLES
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FOV = 90o, start from center, (991) FOV = 90o, start from 4 corners, (1404)

FOV = 90o, start from 1 corner, (1249) FOV = 360o degree, (2290)

Final configuration strongly depends on initial condition

PERFORMANCE



DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH 
OBSTACLES – SIMULATED AND REAL
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THE BIGGER PICTURE:
DISTRIBUTED
OPTIMIZATION



DISTRIBUTED COOPERATIVE OPTIMIZATION

Christos G. Cassandras CODES Lab. - Boston University

i

Nss

sts

ssH
N

each on  sconstraint  ..

),,(min 1,,1




1

1

on  sconstraint  ..

),,(min
1

sts

ssH Ns


N

Ns

sts

ssH
N

on  sconstraint  ..

),,(min 1 

…

N system components 
(processors, agents, vehicles, nodes), 
one common objective:



DISTRIBUTED COOPERATIVE OPTIMIZATION

Christos G. Cassandras CODES Lab. - Boston University

i

Controllable state
si, i = 1,…,ni

))(()()1( kdksks iiii sα+=+

Step Size

Update Direction, usually 
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i requires knowledge of all s1,…,sN

Inter-node communication



SYNCHRONIZED (TIME-DRIVEN) COOPERATION
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1

2

3

COMMUNICATE + UPDATE

Drawbacks:
 Excessive communication (critical in wireless settings!)
 Faster nodes have to wait for slower ones
 Clock synchronization infeasible
 Bandwidth limitations
 Security risks



ASYNCHRONOUS COOPERATION
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1

2

3

 Nodes not synchronized, delayed information used

Bertsekas and Tsitsiklis, 1997

Update frequency for each node
is bounded 

+ 
technical conditions

⇒
))(()()1( kdksks iiii sα+=+

converges



ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION
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2

3

UPDATE
COMMUNICATE

 UPDATE at i : locally determined, arbitrary (possibly periodic)
 COMMUNICATE from i :   only when absolutely necessary

1



HOW MUCH
COMMUNICATION

FOR
OPTIMAL COOPERATION ?



WHEN SHOULD A NODE COMMUNICATE?
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Node state at any time t :  xi(t)

Node state at tk :  si(k)
⇒ si(k) = xi(tk)

: node j state estimated by node i)(ksi
j

j

i
tk

)(kjτEstimate examples:
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WHEN SHOULD A NODE COMMUNICATE?
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AT ANY TIME t :

 If node i knows how j estimates its state, then it can evaluate )(tx j
i

 Node i uses 
• its own true state, xi(t)
• the estimate that j uses, )(tx j

i

… and evaluates an ERROR FUNCTION ( ))(),( txtxg j
ii

Error Function examples:
21

)()(     ,)()( txtxtxtx j
ii

j
ii −−

 : node i state estimated by node j)(tx j
i
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WHEN SHOULD A NODE COMMUNICATE?

Node i communicates its state to node j only when it detects that 
its true state xi(t) deviates from  j’ estimate of it
so that  

)(tx j
i

( ) i
j

ii txtxg δ≥)(),(

( ))(),( txtxg j
iiCompare ERROR FUNCTION to THRESHOLD δi

⇒ Event-Driven Control
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CONVERGENCE 

Asynchronous distributed state update process at each i:
))(()()1( kdksks i

iii s⋅+=+ α

Estimates of other nodes, 
evaluated by node i

THEOREM: Under certain conditions, there exist positive constants
α and Kδ such that

0))((lim =∇
∞→

kH
k

s

NOTE: Analysis uses framework based on [Bertsekas and Tsitsiklis, 1997]

INTERPRETATION: 
Event-driven cooperation achievable with
minimal communication requirements ⇒ energy savings

Zhong and Cassandras, 2009
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COONVERGENCE WHEN DELAYS ARE PRESENT

Red curve:

Black curve:
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Error function trajectory with
NO DELAY
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COONVERGENCE WHEN DELAYS ARE PRESENT

ASSUMPTION: There exists a non-negative integer D such 
that if a message is sent before tk-D from node i to node j, it 
will be received before tk.

INTERPRETATION: at most D state update events can occur between a node 
sending a message and all destination nodes receiving this message.

Add a boundedness assumption:

THEOREM: Under certain conditions, there exist positive constants
α and Kδ such that

0))((lim =∇
∞→

kH
k

s

NOTE: The requirements on α and Kδ depend on D and they are tighter.

Zhong and Cassandras, 2009



SYNCHRONOUS v ASYNCHRONOUS
OPTIMAL COVERAGE PERFORMANCE
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SYNCHRONOUS v ASYNCHRONOUS:
No. of communication events
for a deployment problem with obstacles

SYNCHRONOUS v ASYNCHRONOUS:
Achieving optimality
in a problem with obstacles

Energy savings + Extended lifetime



THE
DATA COLLECTION

PROBLEM



Recall tradeoff:

MODIFIED DISTRIBUTED OPTIMIZATION OBJECTIVE:
collect info from detected data sources (targets) while maintaining 
a good coverage to detect future events

COVERAGE:
persistently look for
new targets 
⇒ spread nodes out

DATA COLLECTION:
optimize data quality
⇒ congregate nodes 
around known targets

TRADEOFF:
Control node location

to optimize
COVERAGE + DATA COLLECTION

Christos G. Cassandras CODES Lab. - Boston University

COVERAGE + DATA COLLECTION

Dt : set of data sources,
estimated based on sensor observations

S(u) : data source value

F(u,s) : joint data collection
quality at u
(e.g., covariance)
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DEMO: REACTING TO EVENT DETECTION

Important to note:

There is no external 
control causing this 
behavior. Algorithm 
includes tracking 
functionality 
automatically



DATA COLLECTION:
THE

REWARD MAXIMIZATION
PROBLEM



REWARD MAXIMIZATION MISSION 

?

?

?

UNKNOWN
TARGETSX

XX

X

X
X

Node 4 “repelled” by Node 3 
⇒ Search task performed

TARGETS
WITH DIFFERENT
REWARDS AND DEADLINES

MISSION OBJECTIVE: MAXIMIZE TOTAL REWARD COLLECTED
BY VISITING TARGETS BEFORE THEIR “DEADLINES” EXPIRE

Christos G. Cassandras CODES Lab. - Boston University



REWARD MAXIMIZATION MISSION CONTINUED

… there are multiple (cooperating) salesmen

… there are deadlines + time-varying rewards

… environment is stochastic
(nodes may fail, threats damage nodes, etc.)

This is like the notorious TRAVELING SALESMAN  
problem, except that…

Christos G. Cassandras CODES Lab. - Boston University
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R1

R2

R3

R4

R5

COMBINATORIAL + STOCHASTIC COMPLEXITY 

1. Target Assignment           2. Routing             3. Path Control



THE BIGGER PICTURE:
MANAGING

UNCERTAINTY



UNCERTAINTY: CONTRAST TWO APPROACHES 

HEDGE-AND-REACTESTIMATE-AND-PLAN VS

Decisions planned ahead
Need accurate

stochastic models
Curse of dimensionality

Delay decisions until 
last possible instant

No (detailed) stochastic model
Simpler opt. problems

- Receding Horizon Control (RHC)
- Model Predictive Control (MPC)

- Dynamic Programming (DP)
- Markov Decision Processes (MDP)

Christos G. Cassandras CODES Lab. - Boston University



UNCERTAINTY: CONTRAST TWO APPROACHES 

HEDGE-AND-REACTESTIMATE-AND-PLAN VS

Decision
Time

Decision
Time

Christos G. Cassandras CODES Lab. - Boston University



COOPERATIVE RECEDING HORIZON (CRH) 
CONTROL: MAIN IDEA
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u1

u2 u3

ACTION
HORIZON, h

PLANNING
HORIZON, H

Solve optimization problem
by selecting all ui to maximize
total expected rewards over H

• Do not attempt to assign nodes to targets
• Cooperatively steer nodes 

towards “high expected reward” regions
• Repeat process periodically/on-event
• Worry about final node-target assignment

at the last possible instant
Turns out nodes

converge to targets
on their own!
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MAIN IDEA IN CRH APPROACH:
Replace complex Discrete Stochastic Optimization problem 
by a sequence of simpler Continuous Optimization problems

But how do we guarantee that nodes ultimately 
head for the desired DISCRETE TARGET POINTS?

TARGET ASSIGNMENT 



STABILITY ANALYSIS 

• TARGETS: yi • NODES: xj

DEFINITION: Node trajectory                          
generated by a controller is stationary, if there 
exists some            , such that                              for 
some         

QUESTION: 
Under what conditions is a CRH-generated 
trajectory stationary ?

[ ])(,),()( 1 txtxt M=x

∞<Vt iivj sytx ≤−)(
.,,1 ,,,1 MjNi  ==

Target Size
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MAIN STABILITY RESULT

Llxxx Ml
M

ll ,,1   ,),...,( 2
1 =∈= RLocal minima of objective function  J(x):

Vector of node positions
at kth iteration of CRH controller:     xk

If all local minima coincide with targets, 
the CRH-generated trajectory is stationary

Theorem:  Suppose .
If, for all l = 1,…,L,     = yi for some i = 1,…,N, j = 1,…,M,
then                                      (b > 0 is a constant). 

l
jx

bJJ kk >− + )()( 1xx

)(min
, kijjik tdH =
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MAIN STABILITY RESULT

When do all local minima coincide with target points?
QUESTION:

1 Node, N targets

2 Nodes, 1 target

2 Nodes, 2 targets

0
,1

>
−

−
− ∑

≠=

N

ijj ji

ji
ji yy

yy
RRIf there exists a yi s.t.
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OTHER ISSUES 
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 Local optima in the CRH optimization problem

 Oscillatory node behavior (instabilities)

 Additional path constraints, 
e.g., rendez-vous at targets

 Does CRH control generate optimal
assignments?



BOSTON UNIVERSITY TEST BEDS
RoboticUrban-like Environment (RULE)

CRH Test Bed with autonomous robots New
autonomous robots

Christos G. Cassandras CODES Lab. - Boston University



REWARD MAXIMIZATION DEMO
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MOVIES OF SUCH PROBLEMS WITH SMALL ROBOTS: 
http://codescolor.bu.edu/multimedia.html3 Khepera robots 

executing mission: 
visiting 8 targets with 
different rewards and 
deadlines. Robots 
communicate wirelessly 
and dynamically update 
headings. Overhead 
vision system provides 
location data.

Inner ring - “reward":
R - 200, G - 300, B - 600
Outer ring - "deadline":
R - 80s, G - 50s, B - 20s



BOSTON UNIVERSITY ROBOTIC URBAN TEST BED



SUMMARY, RESEARCH DIRECTIONS
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 Small, cheap cooperating devices cannot handle complexity
⇒ we need DISTRIBUTED control and optim. algorithms

 Cooperating agents operate autonomously (asynchronously)
⇒ we need ASYNCHRONOUS (EVENT-DRIVEN) 

control/optimization schemes

 Too much communication kills node energy sources
⇒ communicate ONLY when necessary
⇒ we need EVENT-DRIVEN control/optimization schemes

 Networks grow large, sensing tasks grow large
⇒ we need SCALABLE control and optim. algorithms



THRESHOLD PROCESS
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COOPERATIVE REWARD MAXIMIZATION PROBLEM 
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p1i,  i = 1,…,6

p2i,  i = 1,…,6p3i,  i = 1,…,6

C1

C2C3

R1 R3
R4

R2

R5

R6

r1i,  j = 1,…,3

r2i,  j = 1,…,3

r3i,  j = 1,…,3

r6i,  j = 1,…,3

r4i,  j = 1,…,3

r5i,  j = 1,…,3

R1φ1(t) R3φ3(t) R4φ4(t)

R2φ2(t)

R5φ5(t)

R6φ6(t)



SOLUTION APPROACHES 
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 Stochastic Dynamic Programming – Wohletz et al, 2001
Extremely complex…

 Functional Decomposition:
 Dynamic Resource Allocation – Castanon and Wohletz, 2002

 Assignment Problems through Mixed Integer Linear 
Programming – Bellingham et al, 2002

Combinatorially complex…
 Path Planning – Hu and Sastry, 2001, Lian and Murray 2002, Gazi and 
Passino, 2002, Bachmayer and Leonard, 2002



CRH CONTROL PROBLEM FORMULATION 

 Target positions (i = 1,…,N): yi ∈R²

 Node dynamics (j = 1,…,M): 
• State: xj(t) ∈R² position of jth node at time t
• Control: uj(t) Node heading at time t
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j
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kkjkjkkj HtxtxHtx )()()( +=+• Node position at time tk+Hk:
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 At kth iteration, time tk (k=1,2,…):
• Planning Horizon: Hk



RH PROBLEM FORMULATION 
 At kth iteration (k=1,2,…):

Earliest time node j can reach target i under control uj(tk):

CONTINUED

=)),(( kkjij ttuτ

xj (tk +Hk)

xj(tk)

VjHk

uj(tk)

yi

yk

ijτ

kjτ
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qkj

qij

Probability node j
assigned to target 



THE FUNCTION qij    [TARGET ASSIGNMENT FUNCTION]

• Agent-to-target distance: dij

• Relative distance: 
∑ =

= M

m im

ij
ij

d

d

1

δ

• Target assignment function qij(δij):

Monotonically non-increasing and s.t.

0)1(   ,1)0( == ijij qq

ij yx −=

or: b closest agents
to j only
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• A example of qij function (M=2):

THE FUNCTION qij CONTINUED
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Voronoi partition

THE FUNCTION qij CONTINUED

Partition of a plane with into n convex polygons such that
each polygon contains exactly one point and every point
in a given polygon is closer to its central point than to any other. 
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What happens as
parameter ∆ increases ?
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1 1

∑∑
= =

M

i

N

j
ijiiR τφ

u

CRH PROBLEM FORMULATION CONTINUED

 Objective at kth iteration: 
Maximize EXPECTED REWARD over horizon Hk

Christos G. Cassandras CODES Lab. - Boston University

)( ijijp τ

Prob. node  j
collects  target i reward
[depends on uj(t)]

Target i value attainable by node j
[depends on uj(t)]

)( kkij Htq +

Prob. node  j
assigned to  target i
[depends on uj(t)]

Control
node
headings

Earliest time when node
j can collect reward 

from target i
[depends on uj(t)]



PLANNING AND ACTION HORIZONS

Christos G. Cassandras CODES Lab. - Boston University

PLANNING Horizon H(t):

)(min)()(
,min tdtdtH ijji

≡=

ACTION Horizon h(t):

10   ,0   ),()( ≤≤≥+= HHHH tHth βαβα

OR:  Whenever next EVENT occurs



2-NODE CASE – DYNAMIC PARTITIONING
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II: Only node 1 goes to target III: Both nodes go to target
IV: Only node 2 goes to target (1 is repelled !)
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Node
Locations

Possible
Target
Location


	Slide Number 1
	OUTLINE 
	WHAT’S A SENSOR NETWORK ?
	WHY ARE SENSOR NETWORKS EXCITING?
	CYBER-PHYSICAL SYSTEMS
	Slide Number 6
	Slide Number 7
	OPTIMAL COVERAGE WITH OBSTACLES
	SENSOR NETWORK AS A CONTROL SYSTEM
	Slide Number 10
	COVERAGE: PROBLEM FORMULATION
	COVERAGE: PROBLEM FORMULATION
	DISTRIBUTED COOPERATIVE SCHEME
	DISTRIBUTED COOPERATIVE SCHEME
	EXTENSION 1: POLYGONAL OBSTACLES…
	GRADIENT CALCULATION WITH OBSTACLES
	Slide Number 17
	Slide Number 18
	DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH OBSTACLES – SIMULATED AND REAL
	Slide Number 20
	DISTRIBUTED COOPERATIVE OPTIMIZATION
	DISTRIBUTED COOPERATIVE OPTIMIZATION
	SYNCHRONIZED (TIME-DRIVEN) COOPERATION
	ASYNCHRONOUS COOPERATION
	ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION
	Slide Number 26
	WHEN SHOULD A NODE COMMUNICATE?
	WHEN SHOULD A NODE COMMUNICATE?
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	SYNCHRONOUS v ASYNCHRONOUS�			OPTIMAL COVERAGE PERFORMANCE
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	REWARD MAXIMIZATION MISSION 
	REWARD MAXIMIZATION MISSION
	COMBINATORIAL + STOCHASTIC COMPLEXITY 
	Slide Number 41
	Slide Number 42
	Slide Number 43
	COOPERATIVE RECEDING HORIZON (CRH) CONTROL: MAIN IDEA 
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	BOSTON UNIVERSITY TEST BEDS
	REWARD MAXIMIZATION DEMO
	Slide Number 52
	Slide Number 53
	THRESHOLD PROCESS
	COOPERATIVE REWARD MAXIMIZATION PROBLEM 
	SOLUTION APPROACHES 
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64

