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BARGAIN HUNTING IDEAS – AND PITFALLS…
- SAMPLE PATH ANALYSIS
- DECOMPOSITION
- ABSTRACTION
- SURROGATE PROBLEMS
- HIGH PROBABILITY v CERTAINTY

THOUGHTS ON MANAGING COMPLEXITY

COMPLEXITY – FUNDAMENTAL LIMITS
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PHYSICAL
COMPLEXITY

OPERATIONAL
COMPLEXITY

STOCHASTIC
COMPLEXITY

NUMERICAL
COMPLEXITY
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THREE FUNDAMENTAL COMPLEXITY LIMITS

NO-FREE-LUNCH
LIMIT

one order increase in estimation ACCURACY  
requires

two orders increase in learning effort  

(e.g., SIMULATION LENGTH T)

STRATEGY
SPACE

= DECISION
SPACE

INFO.
SPACE

Tradeoff between
GENERALITY and EFFICIENCY

of an algorithm

[Wolpert and Macready, IEEE TEC, 1997]
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THREE FUNDAMENTAL COMPLEXITY LIMITS

NO-FREE-LUNCH
LIMIT

Effect is
MULTIPLICATIVE!



A “BARGAIN” EXAMPLE
USING

SAMPLE PATH ANALYSIS

Christos G. Cassandras

 

CODES Lab. -

 

Boston University



A COMPLEX SYSTEM IN [0, θ]
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);,( θtufx =&

x(t)

θ

f UNKNOWNf UNKNOWN



A COMPLEX SYSTEM IN [0, θ]
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Random fRandom f Random  
Events 

Random  
Events

θ

CONTINUED

x(t)
PROBLEM: Determine θ to minimize:

subject to
∫=

T

T dttxLJ
0

));(()( θθ

);,( θtufx =&



A COMPLEX SYSTEM IN [0, θ]
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θ

x(t)LOSS

β(t)
α(t)
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Increase θ
to keep low
Increase θ
to keep low

Decrease θ
to keep low
Decrease θ
to keep low

θ

CONTINUED



A COMPLEX SYSTEM IN [0, θ]
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F1 F2

LOSSLOSS

WORKLOADWORKLOAD

F1 F2

PROBLEM: Determine θ to trade off LOSS vs WORKLOAD:

CONTINUED
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SENSITIVITY ANALYSIS
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Try and get :

WORKLOAD Sensitivity:
θd

dQT

LOSS Sensitivity:
θd

dLT



SENSITIVITY ANALYSIS - RESULTS
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F1 F2

LOSSLOSS

WORKLOADWORKLOAD

F1 F2

τ

[ ]T
T LE

dt
d

d
dLE =⎥⎦

⎤
⎢⎣
⎡

θ
UNBIASED
ESTIMATE

[ ]T
T QE

dt
d

d
dQE =⎥⎦

⎤
⎢⎣
⎡

θ
UNBIASED
ESTIMATE

Φ(θ) = set of periods with at least one overflow interval 

)(θ
θ

Φ−=
d
dLTLOSS Sensitivity:

τk = time between first overflow and end of period, k∈Φ(θ)

∑
Φ∈

=
)(θ
τ

θ k
k

T

d
dQ

WORKLOAD Sensitivity:

No knowledge of

detailed dynamics,

stochastic characteristics,

or even model parameters



THE MORAL…
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Often, partial knowledge of system dynamics is adequate 
to allow useful inferences from observed state trajectory 
data; in particular: SENSITIVITY INFORMATION

This “bargain” applies to a large (but not universal) class
of problems; otherwise, the NFL limit gets you!

What about this system with ?);,,( θtuxfx =&

FeedbackFeedbackSimilar results, but more info. 
needed regarding model 
parameters
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HIERARCHICAL DECOMPOSITION 
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PHYSICAL
PROCESSES

DISCRETE-EVENT
PROCESSES

???

PLANNING

AIRCRAFT
FLIGHT
DYNAMICS

COMMANDS,
RANDOM
EVENTS

FLIGHT PLAN



HIEARARCHICAL DECOMPOSITION 
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PHYSICAL
PROCESSES

DISCRETE-EVENT
PROCESSES

???

PLANNING
Diff. Eq’s, Flows, LP

Automata, Petri nets,
Queueing, Simulation

Diff. Eq’s, 
Detailed Simulation

MODELMODEL

Weeks - Months

Minutes - Weeks

msec - Hours

TIME SCALETIME SCALE

CONTINUED



HYBRID CONTROL SYSTEM 
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PHYSICAL
PROCESSES

DISCRETE-EVENT
PROCESSES

CONTROLCONTROL

What exactly
does that mean?

What exactly
does that mean?



NEW “M
ODE”

x0

x1

),,( 1111 tuzgz =&

TIME

x1

x2

),,,( 11011 tuzxfx =

),,( 2222 tuzgz =&

),,,( 22122 tuzxfx =
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WHAT’S A HYBRID SYSTEM? 

More on modeling frameworks, open problems, etc: [Proc. of IEEE Special Issue (Antsaklis, Ed.), 2000]More on modeling frameworks, open problems, etc: [Proc. of IEEE Special Issue (Antsaklis, Ed.), 2000]

TIME-DRIVEN
DYNAMICS

EVENT-DRIVEN
DYNAMICS
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HYBRID SYSTEMS IN COOPERATIVE CONTROL

BASE

TARGET

THREATS

TIME-DRIVEN
DYNAMICS

EVENT: threat sensed

EVENT: info. communicated by team member



Key questions facing manufacturing system integrators:

• How to integrate ‘process control’ with ‘operations control’ ?

• How to improve product QUALITY within reasonable TIME ?

PROCESS CONTROL
• Physicists
• Material Scientists
• Chemical Engineers
• ...

OPERATIONS CONTROL
• Industrial Engineers, OR
• Schedulers
• Inventory Control
• ...

Christos G. Cassandras
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HYBRID SYSTEM IN MANUFACTURING



OPERATIONOPERATION

Throughout a manuf. process, each part is characterized by

• A PHYSICAL state   (e.g., size, temperature, strain)

• A TEMPORAL state (e.g., total time in system, total time to due-date)

NEW 
TEMPORAL

STATE

TEMPORAL
STATE

PHYSICAL
STATE

NEW 
PHYSICAL

STATE

Time-driven
Dynamics

Event-driven
Dynamics
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HYBRID SYSTEM IN MANUFACTURING CONTINUED



DECOMPOSITION
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MORE COMPLEXLESS COMPLEX

TIME-DRIVEN
SYSTEM

EVENT-DRIVEN
SYSTEM

DECOMPOSITIONLESS COMPLEX

What exactly
does that mean?

What exactly
does that mean? HYBRID

SYSTEM



ABSTRACTION
(AGGREGATION)
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TIME-DRIVEN
SYSTEM
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ABSTRACTION
(AGGREGATION)LESS COMPLEX

MORE COMPLEXLESS COMPLEX

HYBRID
SYSTEM

ZOOM OUT

EVENT-DRIVEN
SYSTEM



HYBRID
SYSTEM
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TIME-DRIVEN
SYSTEM

EVENT-DRIVEN
SYSTEM

HYBRID
SYSTEM

ABSTRACTION
(AGGREGATION) DECOMPOSITION

MORECOMPLEXLESS COMPLEX



TOO CLOSE…
too much

undesirable
detail

TOO FAR…
model not

detailed enough

WHAT IS THE RIGHT ABSTRACTION LEVEL ? 
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JUST RIGHT…
good model CREDIT: W.B. Gong



DECOMPOSITION IN
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OPTIMAL CONTROL PROBLEMS 

x1 x2

Physical State, z

Temporal State, x
xN

zN

• Minimize:   - deviations from N desired physical states (zi - qi )2

- deviations from target desired times (xi - τi )2

• Get to desired final physical state zN in minimum time xN , subject to N-1 switching events
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),,( tuzgz iiii =&
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xi+1 = fi (xi ,ui ,t)

Physical state

Temporal state
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OPTIMAL CONTROL PROBLEMS 

Event-driven
Dynamics

Time-driven
Dynamics



Assume: )(),( 1 iiiii sxx φφ =−
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OPTIMAL CONTROL PROBLEMS CONTINUED

∑ ∫
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xi+1 = fi (xi ,ui ,t)

LOWER 
LEVEL 
PROBLEMS:

HIGHER 
LEVEL 
PROBLEM:

FIXED  si
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HIERARCHICAL DECOMPOSITION



x1 x2
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HIERARCHICAL DECOMPOSITION

0
2+iz

CONTINUED

),,(min),,(

),,(
0

0*

iiiiui
f
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i
f
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suzszz

szzu

i

φθ =

“ROUTINE”
OPTIMAL CONTROL

PROBLEM!

“ROUTINE”
OPTIMAL CONTROL

PROBLEM!

),(),max( 11 iiiiii uzsaxx += ++Typical example:



x1 x2
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HIERARCHICAL DECOMPOSITION CONTINUED

…but we still have to solve
all LOWER-LEVEL problems
and a HIGHER-LEVEL problem

Decomposition works well in this case…

[Gokbayrak and Cassandras, 2000][Gokbayrak and Cassandras, 2000] [Xu and Antsaklis, 2000][Xu and Antsaklis, 2000]

…and there is also the issue of
selecting among many possible
modes to switch to

[Bemporad et al, 2000][Bemporad et al, 2000]



ABSTRACTION
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ABSTRACTION OF A DISCRETE-EVENT SYSTEM
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DISCRETE-EVENT
SYSTEM



HYBRID
SYSTEM

ABSTRACTION OF A DISCRETE-EVENT SYSTEM
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EVENTSTIME-DRIVEN
FLOW RATE DYNAMICS

DISCRETE-EVENT
SYSTEM



θ

x(t)
γ(t)

β(t)
α(t)

STOCHASTIC FLOW MODELS (SFM)
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λ(t) = α(t) - β(t)λ(t) = α(t) - β(t)

⎪
⎩

⎪
⎨

⎧

−
≥−=
≤−=

=
otherwise))(()(

0)()(  ,)(0
0)0()(  ,0)(0

txpt
pttx
pttx

dt
dx

λ
θλθ

λ

feedbackfeedback

CONTROLLER

α(t) – p(x)

α(t), β(t): arbitrary stochastic processes
(piecewise continuously differentiable)
α(t), β(t): arbitrary stochastic processes
(piecewise continuously differentiable)



WHY SFM?
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If used for CONTROL purposes,   
another “BARGAIN” opportunity arises…

“Lower resolution” model of “real” system intended to 
capture  just enough info. on system dynamics

Aggregates many events into simple continuous dynamics, 
preserves only events that cause drastic change
⇒

 
computationally efficient

(e.g., orders of magnitude faster simulation)



AN EXAMPLE OF A
“BARGAIN”

USING A
“SURROGATE” PROBLEM
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K

x(t)LOSS

ARRIVAL
PROCESS

THRESHOLD BASED BUFFER CONTROL
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PROBLEM: Determine Κ to minimize  [Q(K) + R·L(K)]

L(K): Loss Rate

Q(K): Mean
Queue Lenth

SURROGATE PROBLEM: Determine θ to minimize  [QSFM(θ) + R·LSFM(θ)]

“REAL” SYSTEM

θ

x(t)
γ(t)

β(t)
α(t)

RANDOM 
PROCESS

RANDOM 
PROCESS

SFM



15

17

19

21

23

25

0 5 10 15 20 25 30 35 40 45

K

J(
K

)

DES

SFM

Opt. A lgo

“Real” System

SFM

Optim. Algorithm
using SFM-based 
gradient estimates

THRESHOLD BASED BUFFER CONTROL
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CONTINUED



r∗

DISCRETE SET

ρ∗

“SURROGATE”
CONTINUOUS SET

“SURROGATE” PROBLEM IDEA

Christos G. Cassandras
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ρn

ρn -1

rn

rn = f(ρn )

1. Transform

3. Update

ρn+1

H(rn )

2. Observe and estimate
(e.g., gradient)

r* = f(ρ*) ???

)(1 nnnn rHηρρ +=+

Observe and estimate

This is not “real”…This is not “real”……but this is “real”……but this is “real”…



WHEN DOES THIS PROVABLY WORK?
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Need some structural properties;
otherwise, the NFL limit gets you!

Resource allocation problems

Cooperative control problems – see Session FrA06

Similarities to Ordinal Optimization
[Ho et al, JDEDS 1992][Ho et al, JDEDS 1992]

[Gokbayrak and Cassandras, JOTA 2002][Gokbayrak and Cassandras, JOTA 2002]



Christos G. Cassandras

 

CODES Lab. -

 

Boston University

V1

V2

V3

V4

V5

BYPASSING COMPLEXITY IN
COOPERATIVE CONTROL CONTINUED
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V1

V2

V3

V4

V5

Optimal heading
Over

Event-Driven
Receding Horizon

V6

Current Control Horizon

BYPASSING COMPLEXITY IN
COOPERATIVE CONTROL CONTINUED
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MAIN IDEA:
Replace complex Discrete Stochastic Optimization problem 
by a sequence of simpler Continuous Optimization problems

BYPASSING COMPLEXITY IN
COOPERATIVE CONTROL CONTINUED

But how do we guarantee that vehicles actually 
head for desired DISCRETE POINTS?

It turns out they do!

Can replace HARD problem by
several SIMPLER ones…
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TIME-DRIVEN
SYSTEM

EVENT-DRIVEN
SYSTEM

What exactly
does that mean?

What exactly
does that mean?

DANGERS OF DECOMPOSITION, ABSTRACTION



a = E[A(u,ω)]a = E[A(u,ω)]

AVERAGING

INPUT u

HIGH-RESOLUTION
SIMULATORRANDOMNESS ω

OUTPUT:
Data from 
N simulated 
scenarios

... A(u,ω1 )A(u,ω1 )A(u,ωN )A(u,ωN )

Christos G. Cassandras
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DANGERS OF DECOMPOSITION, ABSTRACTION

a OUTPUT:
x(a)LOW-RESOLUTION MODEL

e.g.,  x = f(x,a)
.



a OUTPUT:

x(a)LOW-RESOLUTION MODEL
e.g.,  x = f(x,a)

.

Average corresponds to unlikely scenario ⇒
 

x(a) is way off...Average corresponds to unlikely scenario ⇒
 

x(a) is way off...

x

WHY THIS FAILS...

Christos G. Cassandras
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MEAN a

Prob. Density Function
of A

obtained from
High Resolution model

Prob. Density Function
of A

obtained from
High Resolution model



WHY THIS FAILS...
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SIMPLE AVERAGING:       f(E[A])

SAMPLE, THEN AVERAGE:       E[f(A)]

≠

If ultimate OUTPUT is   x(a) = 0 or 1
this can result in 0 instead of 1

⇒ completely wrong conclusion !



WHAT’S THE WAY AROUND THIS?
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QUESTION: To average or not to average ?
ANSWER: Average “just enough”

Replace AVERAGE by CONDITIONAL AVERAGES,
one for each CLUSTER
CLUSTER = group of “similar” scenarios from

High Resolution model

CLUSTER ANALYSIS



CLUSTERING

... amam
a1a1

LOW-RESOLUTION
MODEL

am

...
LOW-RESOLUTION

MODEL
a1

x = E[f(a)]x = E[f(a)]

AVERAGING...

INPUT u
HIGH-RESOLUTION

SIMULATORRANOMNESS ω

... A(u,ω1 )A(u,ω1 )A(u,ωN )A(u,ωN )

CLUSTERING
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HIGH PROBABLILITY
v

CERTAINTY
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Birthday Paradox

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1 6 11 16 21 26 31 36 41 46 51 56 61 66

No. of samples

Pr
ob

. o
f S

uc
ce

ss

HIGH PROBABILITY v CERTAINTY
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0.001

0.01

0.1

1
1 51 101 151 201 251 301 351

CERTAINTY v 99% CONFIDENCE

366 v 60



A BRAVE NEW COMPLEX WORLD…
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A BRAVE NEW COMPLEX WORLD…
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MANAGING COMPLEXITY
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Better HARDWARE and SOFTWARE help…

System ARCHITECTURE v OPERATIONAL CONTROL

HIGH v LOW  RESOLUTION models
(Too much detail can hurt)

Know what PROBLEM needs to be solved, 
then develop METHODOLOGIES (otherwise, NFL limit gets you!)

MODEL-DRIVEN v DATA-DRIVEN approaches
(Embrace DATA -- and the NETWORK that gets data to you)
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reflected in this talk…
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