EVENT-DRIVEN CONTROL AND OPTIMIZATION: WHERE LESS IS OFTEN MORE...

C. G. Cassandras

Division of Systems Engineering and Dept. of Electrical and Computer Engineering and Center for Information and Systems Engineering Boston University

Reasons for EVENT-DRIVEN Control and Optimization

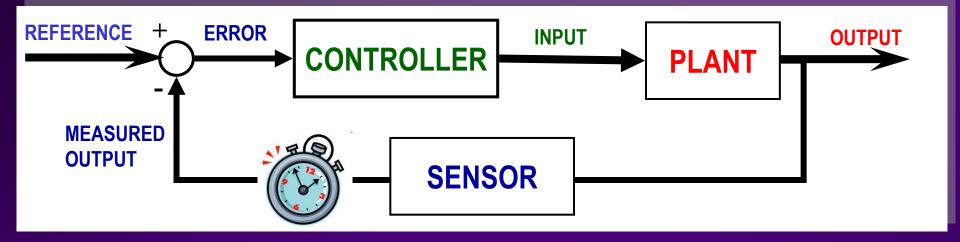
EVENT-DRIVEN Control in Distributed Systems

EVENT-DRIVEN Control in Managing Uncertainty

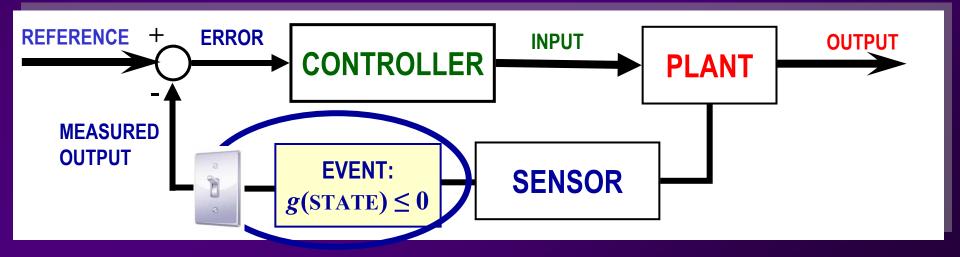
EVENT-DRIVEN Sensitivity Analysis

Christos G. Cassandras

TIME-DRIVEN v EVENT-DRIVEN CONTROL



EVENT-DRIVEN CONTROL: Act *only when needed* (or on TIMEOUT) - not based on a clock



Christos G. Cassandras

REASONS FOR EVENT-DRIVEN MODELS, CONTROL, OPTIMIZATION

- Many systems are naturally Discrete Event Systems (DES) (e.g., Internet)
 → all state transitions are event-driven
- Most of the rest are Hybrid Systems (HS) \rightarrow some state transitions are event-driven
- Many systems are distributed → components interact asynchronously (through events)
- Time-driven sampling inherently inefficient ("open loop" sampling)

REASONS FOR *EVENT-DRIVEN* MODELS, CONTROL, OPTIMIZATION

Many systems are stochastic

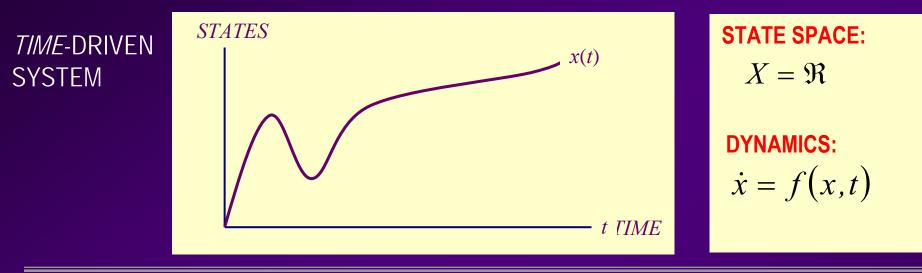
 \rightarrow actions needed in response to random events

 Event-driven methods provide significant advantages in computation and estimation quality

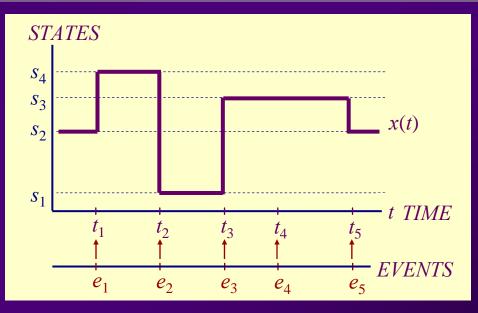
System performance is often more sensitive to event-driven components than to time-driven components

 Many systems are wirelessly networked → energy constrained
 → time-driven communication consumes significant energy UNNECESSARILY!

TIME-DRIVEN v EVENT-DRIVEN SYSTEMS

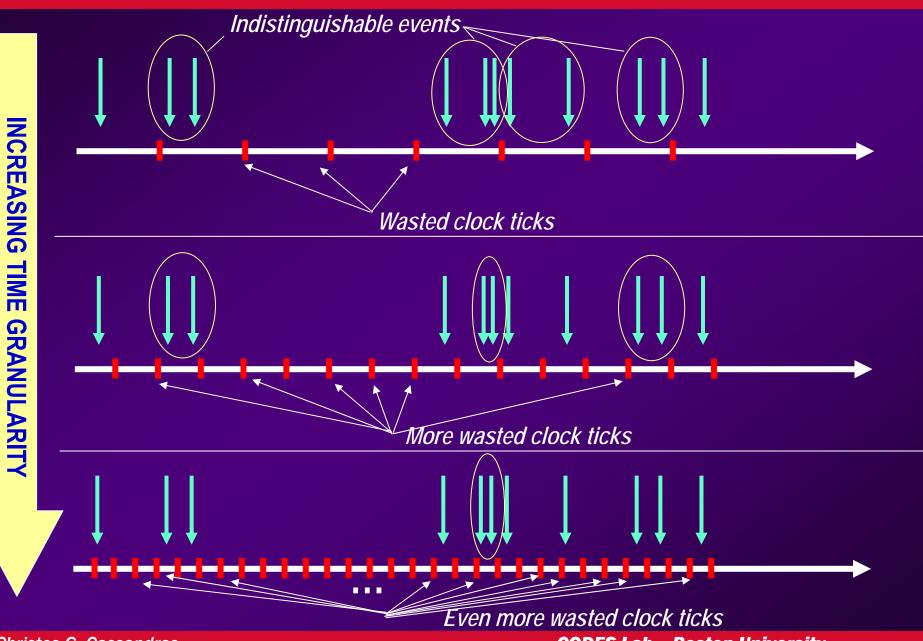


EVENT-DRIVEN SYSTEM



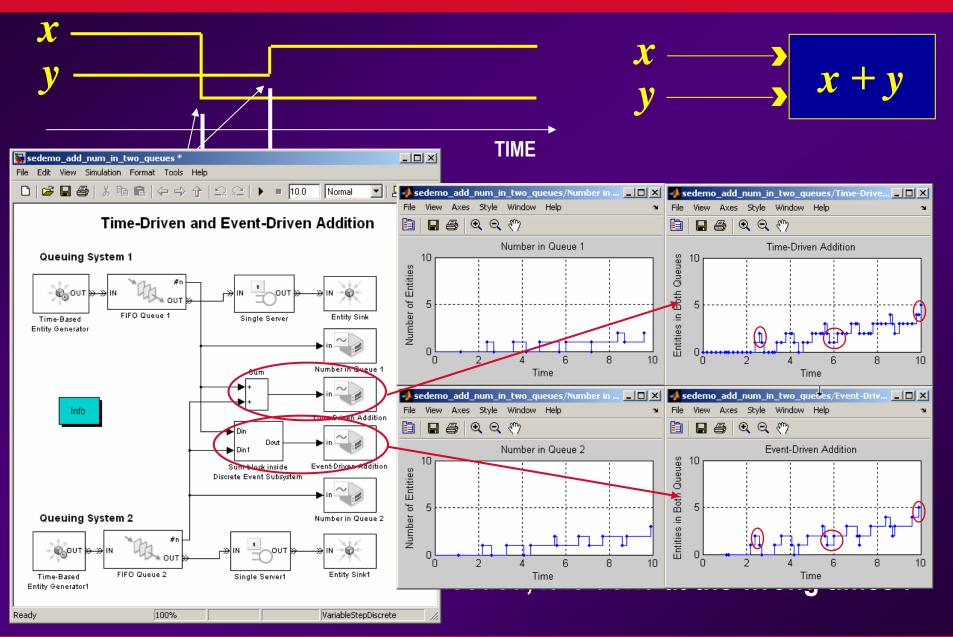
STATE SPACE: $X = \{s_1, s_2, s_3, s_4\}$ DYNAMICS: x' = f(x, e)

SYNCHRONOUS v ASYNCHRONOUS BEHAVIOR



Christos G. Cassandras

SYNCHRONOUS v ASYNCHRONOUS COMPUTATION



Christos G. Cassandras

SELECTED REFERENCES - EVENT-DRIVEN CONTROL

Astrom, K.J., and B. M. Bernhardsson, "Comparison of Riemann and Lebesgue sampling for first order stochastic systems," *Proc. 41st Conf. Decision and Control*, pp. 2011–2016, 2002.
T. Shima, S. Rasmussen, and P. Chandler, "UAV Team Decision and Control using Efficient Collaborative Estimation," *ASME J. of Dynamic Systems, Measurement, and Control*, vol. 129, no. 5, pp. 609–619, 2007.

- Heemels, W. P. M. H., J. H. Sandee, and P. P. J. van den Bosch, "Analysis of event-driven controllers for linear systems," *Intl. J. Control*, 81, pp. 571–590, 2008.

- P. Tabuada, "Event-triggered real-time scheduling of stabilizing control tasks," *IEEE Trans. Autom. Control*, vol. 52, pp. 1680–1685, 2007.

- J. H. Sandee, W. P. M. H. Heemels, S. B. F. Hulsenboom, and P. P. J. van den Bosch, "Analysis and experimental validation of a sensor-based event-driven controller," *Proc. American Control Conf.*, pp. 2867–2874, 2007.

- J. Lunze and D. Lehmann, "A state-feedback approach to event-based control," *Automatica*, 46, pp. 211–215, 2010.

P. Wan and M. D. Lemmon, "Event triggered distributed optimization in sensor networks," *Proc. of 8th ACM/IEEE Intl. Conf. on Information Processing in Sensor Networks*, 2009.
Zhong, M., and Cassandras, C.G., "Asynchronous Distributed Optimization with Event-Driven Communication", *IEEE Trans. on Automatic Control*, AC-55, 12, pp. 2735-2750, 2010.

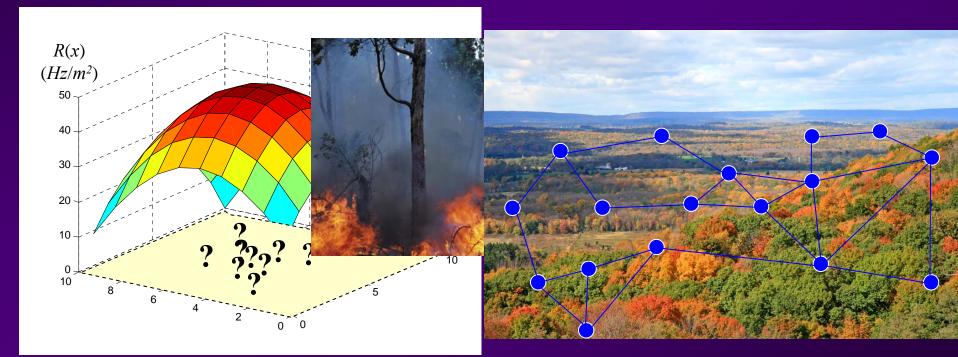
Christos G. Cassandras

EVENT-DRIVEN CONTROL IN DISTRIBUTED SYSTEMS

MOTIVATIONAL PROBLEM: COVERAGE CONTROL

Deploy sensors to maximize "event" detection probability

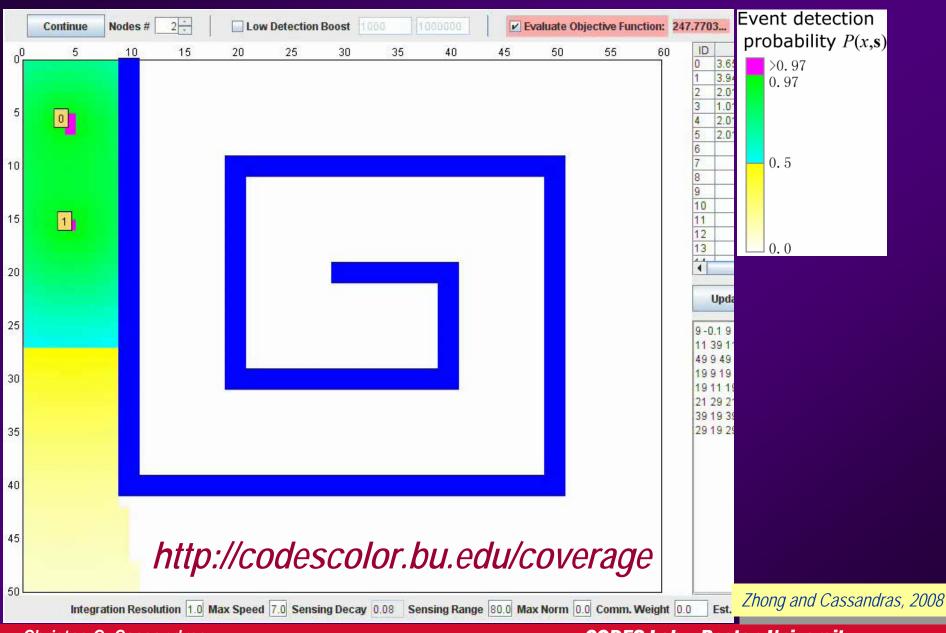
- unknown event locations
- event sources may be mobile
- sensors may be mobile



Perceived event density (data sources) over given region (mission space)

Christos G. Cassandras

OPTIMAL COVERAGE IN A MAZE



Christos G. Cassandras

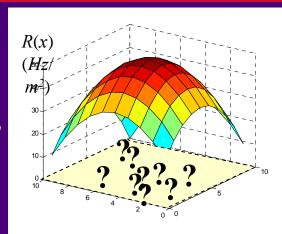
COVERAGE: PROBLEM FORMULATION

- N mobile sensors, each located at $s_i \in \mathbb{R}^2$
- Data source at x emits signal with energy E
- Signal observed by sensor node *i* (at s_i)
- SENSING MODEL:

 $p_i(x, s_i) \equiv P[\text{Detected by } i \mid A(x), s_i]$ (A(x) = data source emits at x)

Sensing attenuation:

 $p_i(x, s_i)$ monotonically decreasing in $d_i(x) \equiv ||x - s_i||$



COVERAGE: PROBLEM FORMULATION

Joint detection prob. assuming sensor independence $(s = [s_1, ..., s_N]$: node locations)

$$P(x, \mathbf{s}) = 1 - \prod_{i=1}^{N} \left[1 - p_i(x, s_i) \right]$$

• OBJECTIVE: Determine locations s = [s₁,...,s_N] to maximize total *Detection Probability*:

$$\max_{\mathbf{s}} \int_{\Omega} R(x) P(x, \mathbf{s}) dx$$

Perceived event density

Christos G. Cassandras

DISTRIBUTED COOPERATIVE SCHEME

Set

$$H(s_1, \dots, s_N) = \int_{\Omega} R(x) \left\{ 1 - \prod_{i=1}^N \left[1 - p_i(x) \right] \right\} dx$$

• Maximize $H(s_1,...,s_N)$ by forcing nodes to move using gradient information:

$$\frac{\partial H}{\partial s_k} = \int_{\Omega} R(x) \prod_{i=1, i \neq k}^{N} \left[1 - p_i(x) \right] \frac{\partial p_k(x)}{\partial d_k(x)} \frac{s_k - x}{d_k(x)} dx$$

$$s_i^{k+1} = s_i^k + \beta_k \frac{\partial H}{\partial s_i^k}$$

Desired displacement = $V \cdot \Delta t$

Cassandras and Li, 2005 Zhong and Cassandras, 2011

Christos G. Cassandras

DISTRIBUTED COOPERATIVE SCHEME

 $\frac{\partial H}{\partial s_k} = \int_{\Omega} R(x) \prod_{i=1, i \neq k}^{N} \left[1 - p_i(x) \right] \frac{\partial p_k(x)}{\partial d_k(x)} \frac{s_k - x}{d_k(x)} dx$

... has to be autonomously evaluated by each node so as to determine how to move to next position:

$$s_i^{k+1} = s_i^k + \beta_k \frac{\partial H}{\partial s_i^k}$$

> Use truncated $p_i(x) \Rightarrow \Omega$ replaced by node neighborhood

> Discretize $p_i(x)$ using a local grid

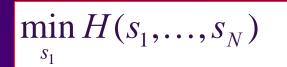
CONTINUED

DISTRIBUTED COOPERATIVE OPTIMIZATION

N system components (processors, agents, vehicles, nodes), one common objective:

$$\min_{s_1,\ldots,s_N} H(s_1,\ldots,s_N)$$

s.t. constraints on each s_i



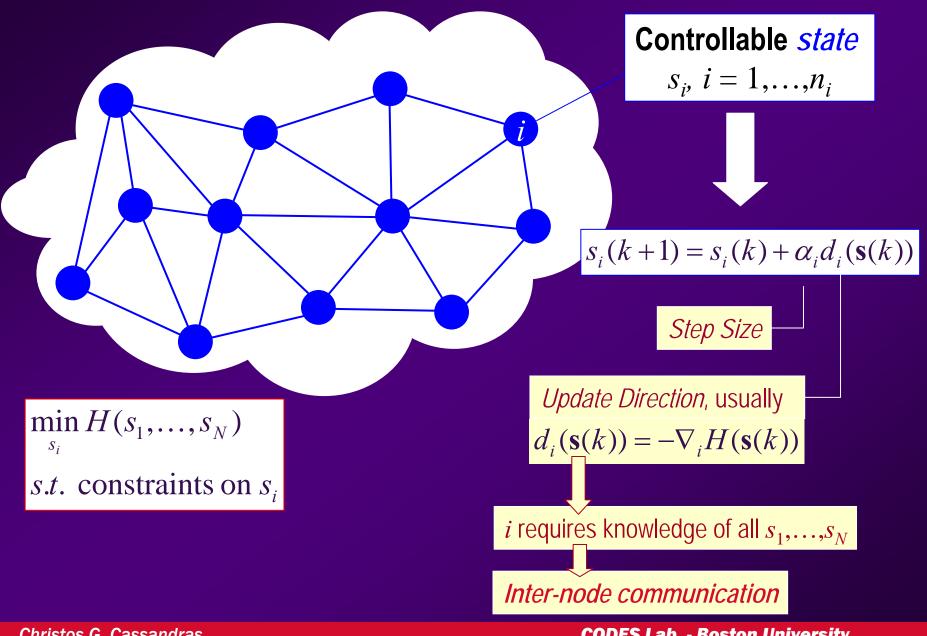
s.t. constraints on s_1

•

$$\min_{s_N} H(s_1, \dots, s_N)$$
s.t. constraints on *s*_N

Christos G. Cassandras

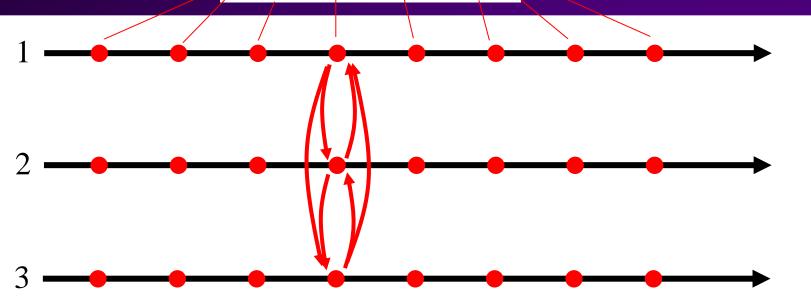
DISTRIBUTED COOPERATIVE OPTIMIZATION



Christos G. Cassandras

SYNCHRONIZED (TIME-DRIVEN) COOPERATION

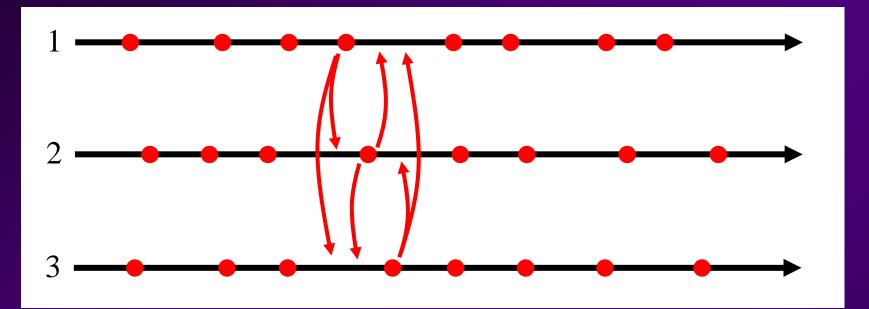
COMMUNICATE + UPDATE



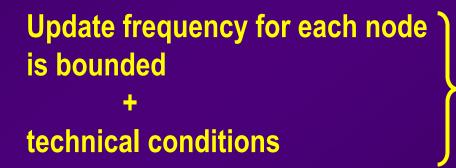
Drawbacks:

- Excessive communication (critical in wireless settings!)
- Faster nodes have to wait for slower ones
- Clock synchronization infeasible
- Bandwidth limitations
- Security risks

ASYNCHRONOUS COOPERATION



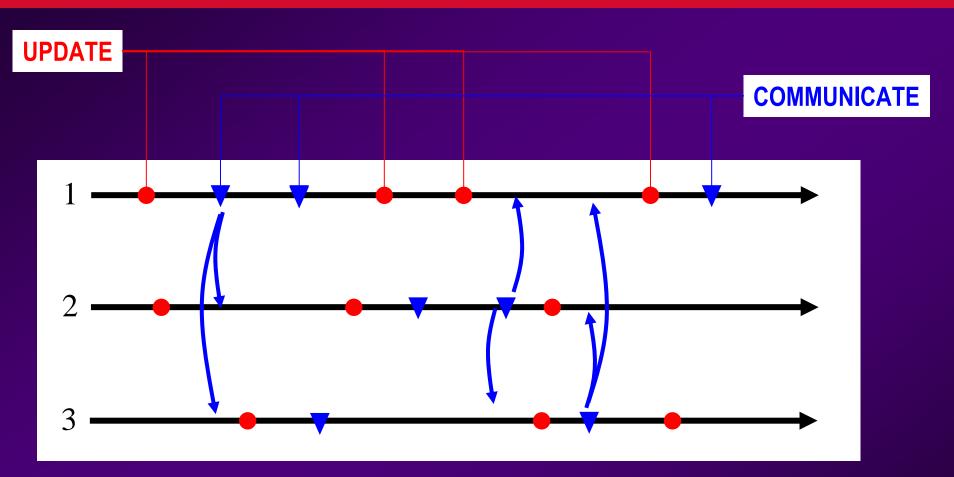
Nodes not synchronized, delayed information used



 $\Rightarrow \frac{s_i(k+1) = s_i(k) + \alpha_i d_i(\mathbf{s}(k))}{\text{converges}}$

Bertsekas and Tsitsiklis, 1997

ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION



UPDATE at *i*: locally determined, arbitrary (possibly periodic)
 COMMUNICATE from *i*: only when absolutely necessary

Christos G. Cassandras

WHEN SHOULD A NODE COMMUNICATE?

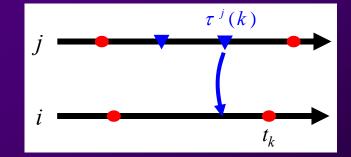
Node state at any time t: $x_i(t)$ Node state at t_k : $s_i(k)$ \Rightarrow $s_i(k) = x_i(t_k)$

AT UPDATE TIME $t_k : s_j^i(k)$: node j state estimated by node i

Estimate examples:

 $\implies s_j^i(k) = x_j(\tau^j(k))$

Most recent value



on

$$\Rightarrow s_j^i(k) = x_j(\tau^j(k)) + \frac{t_k - \tau^j(k)}{\Delta_j} \cdot \alpha_i \cdot d_j(x_j(\tau^j(k)))$$
 Linear prediction

Christos G. Cassandras

WHEN SHOULD A NODE COMMUNICATE?

AT ANY TIME *t* :

- $x_i^j(t)$: node *i* state estimated by node *j*
- If node *i* knows how *j* estimates its state, then it can evaluate $x_i^j(t)$
- Node *i* uses
 - its own true state, $x_i(t)$
 - the estimate that j uses, $x_i^j(t)$

... and evaluates an ERROR FUNCTION $g(x_i(t), x_i^j(t))$

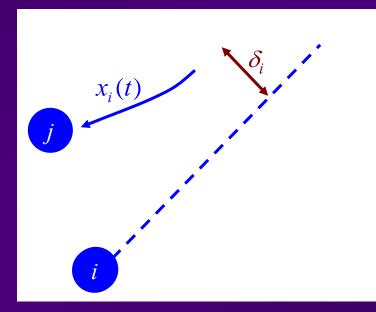
Error Function examples:
$$\left\|x_{i}(t) - x_{i}^{j}(t)\right\|_{1}$$
, $\left\|x_{i}(t) - x_{i}^{j}(t)\right\|_{2}$

Christos G. Cassandras

WHEN SHOULD A NODE COMMUNICATE?

Compare ERROR FUNCTION $g(x_i(t), x_i^j(t))$ to THRESHOLD δ_i

Node *i* communicates its state to node *j* only when it detects that its *true* state $x_i(t)$ deviates from *j* ' estimate of it $x_i^j(t)$ so that $g(x_i(t), x_i^j(t)) \ge \delta_i$



⇒ *Event-Driven* Control

Christos G. Cassandras

CONVERGENCE

Asynchronous distributed state update process at each *i*:

$$s_i(k+1) = s_i(k) + \alpha \cdot d_i(\mathbf{s}^i(k))$$

Estimates of other nodes, evaluated by node i

$$\delta_i(k) = \begin{cases} K_{\delta} \| d_i(\mathbf{s}^i(k)) \| & \text{if } k \text{ sends update} \\ \delta_i(k-1) & \text{otherwise} \end{cases}$$

THEOREM: Under certain conditions, there exist positive constants α and K_{δ} such that

 $\lim_{k\to\infty}\nabla H(\mathbf{s}(k))=0$

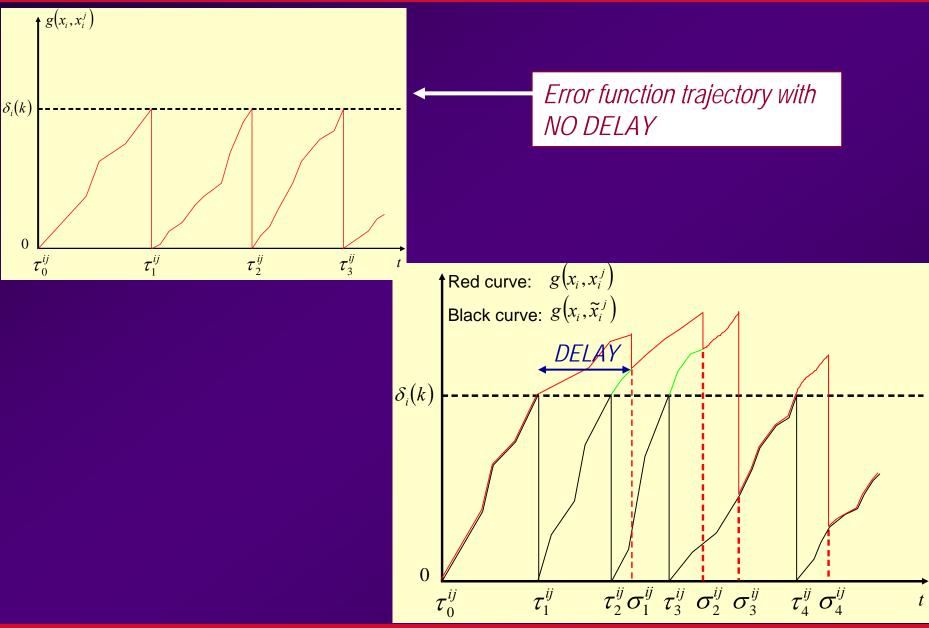
Zhong and Cassandras, IEEE TAC, 2010

INTERPRETATION:

Event-driven cooperation achievable with minimal communication requirements \Rightarrow *energy savings*

Christos G. Cassandras

COONVERGENCE WHEN DELAYS ARE PRESENT



Christos G. Cassandras

COONVERGENCE WHEN DELAYS ARE PRESENT

Add a boundedness assumption:

ASSUMPTION: There exists a non-negative integer *D* such that if a message is sent before t_{k-D} from node *i* to node *j*, it will be received before t_k .

INTERPRETATION: at most *D* state update events can occur between a node sending a message and all destination nodes receiving this message.

THEOREM: Under certain conditions, there exist positive constants α and K_{δ} such that

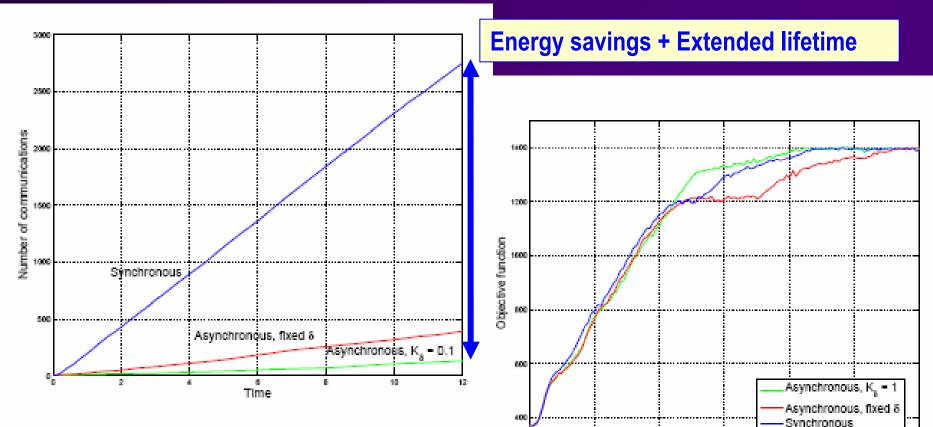
 $\lim_{k\to\infty}\nabla H(\mathbf{s}(k))=0$

NOTE: The requirements on α and K_{δ} depend on **D** and they are tighter.

Zhong and Cassandras, IEEE TAC, 2010

Christos G. Cassandras

SYNCHRONOUS v ASYNCHRONOUS OPTIMAL COVERAGE PERFORMANCE



SYNCHRONOUS v ASYNCHRONOUS:

No. of communication events for a deployment problem *with obstacles*

SYNCHRONOUS v ASYNCHRONOUS:

Time

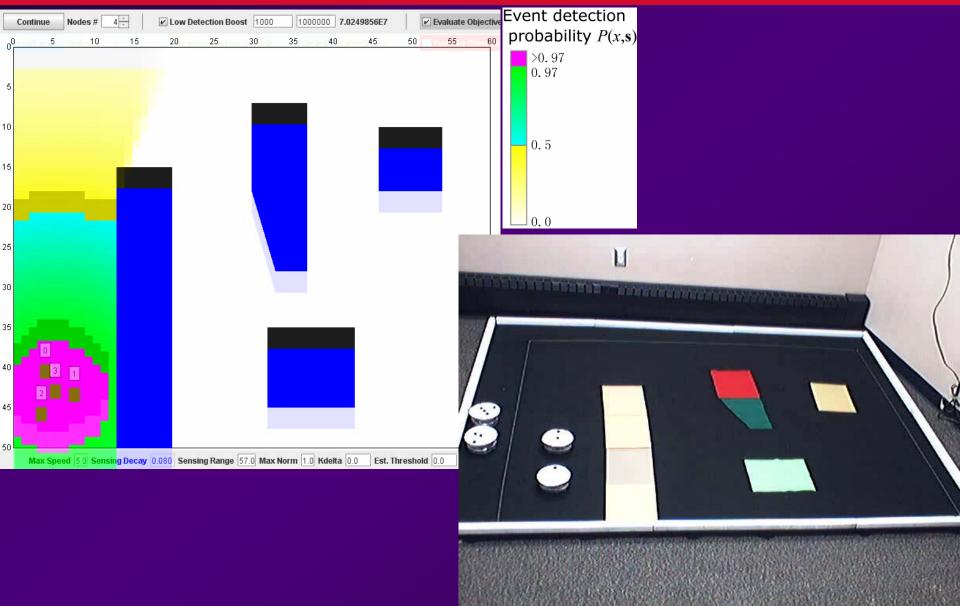
10

12

Achieving optimality in a problem *with obstacles*

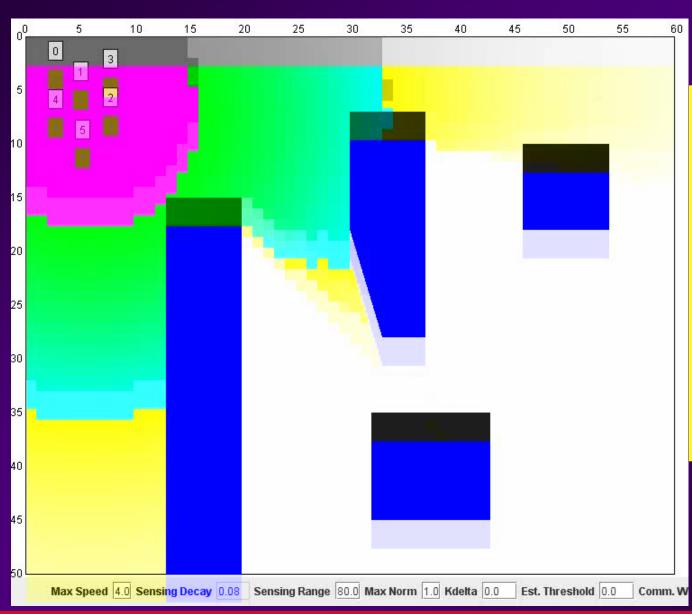
Christos G. Cassandras

DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH OBSTACLES – SIMULATED AND REAL



Christos G. Cassandras

DEMO: REACTING TO EVENT DETECTION



Important to note:

There is no external control causing this behavior. Algorithm includes tracking functionality automatically

Christos G. Cassandras

EVENT-DRIVEN CONTROL IN MANAGING UNCERTAINTY

UNCERTAINTY: CONTRAST TWO APPROACHES

VS

ESTIMATE-AND-PLAN

 Decisions planned ahead
 Need accurate stochastic models
 Curse of dimensionality

HEDGE-AND-REACT

Delay decisions until last possible instant
No (detailed) stochastic model
Simpler opt. problems

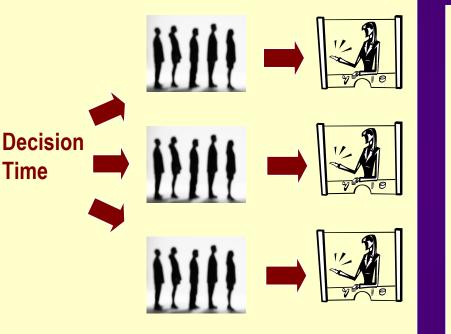
Dynamic Programming (DP)
Markov Decision Processes (MDP)

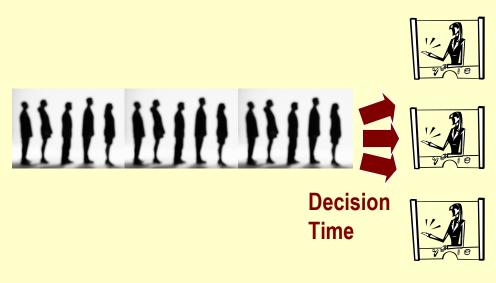
- Receding Horizon Control (RHC) - Model Predictive Control (MPC)

UNCERTAINTY: CONTRAST TWO APPROACHES

VS

ESTIMATE-AND-PLAN





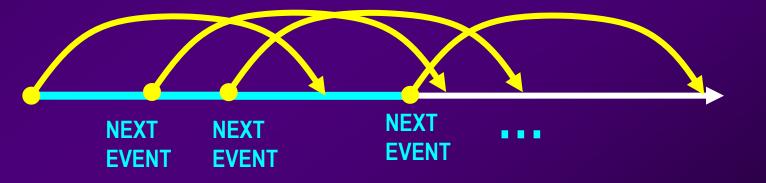
HEDGE-AND-REACT

TIME-DRIVEN v EVENT-DRIVEN RHC

 Δ must be small, Computationally intensive

EVENT-DRIVEN:

Computational intensity depends on event frequency



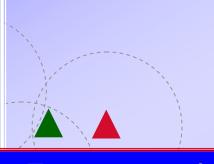
Christos G. Cassandras

COOPERATIVE RECEDING HORIZON (CRH) CONTROL: MAIN IDEA

- Do not attempt to assign nodes to targets
- Cooperatively steer nodes towards "high expected reward" regions
- Repeat process when event occurs

U,

 Worry about final node-target assignment at the last possible instant



Turns out nodes converge to targets on their own! Solve optimization problem by selecting all u_i to maximize total expected rewards over **H**

REWARD-MAXIMIZATION MISSION

U₂

HORIZON, h

MAIN IDEA IN CRH APPROACH:

- Replace complex *Discrete Stochastic Optimization* problem by a sequence of simpler *Continuous Optimization* problems
- Solve each new problem whenever a PREDEFINED EVENT occurs (e.g., some node gets to some target)
- ... or when a **RANDOM EVENT** (or a **TIMEOUT**) occurs

But how do we guarantee that nodes ultimately head for the desired DISCRETE TARGET POINTS?

STABILITY ANALYSIS

• TARGETS: y_i • NODES: x_j • DISTANCE: d_{ij}

DEFINITION: Node trajectory $\mathbf{x}(t) = [x_1(t), \dots, x_M(t)]$ generated by a controller is *stationary*, if there exists some $t_V < \infty$, such that $||x_j(t_v) - y_i|| \le s_i$ for some $i = 1, \dots, N, j = 1, \dots, M$.

Target Size

QUESTION:

Under what conditions is a CRH-generated trajectory stationary?

MAIN STABILITY RESULT

Local minima of objective function J(x): $x^{l} = (x_{1}^{l}, ..., x_{M}^{l}) \in \mathbb{R}^{2M}$, l = 1, ..., L

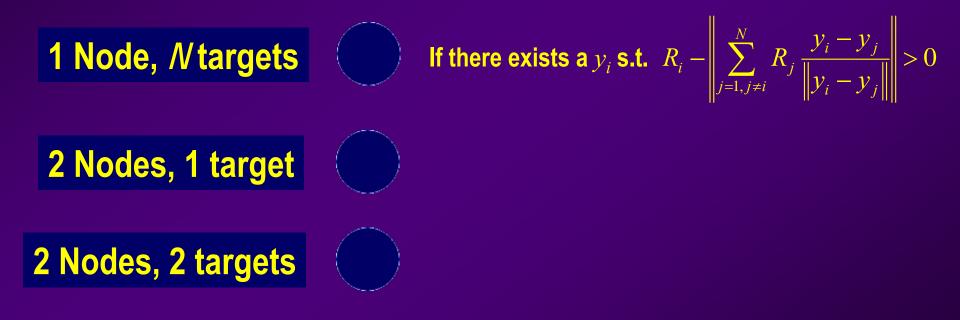
Vector of node positions at *k*th iteration of CRH controller: x_k

Theorem: Suppose $H_k = \min_{i,j} d_{ij}(t_k)$. If, for all l = 1, ..., L, $x_j^l = y_i$ for some i = 1, ..., N, j = 1, ..., M, then $J(\mathbf{x}_k) - J(\mathbf{x}_{k+1}) > b$ (b > 0 is a constant).

If all local minima coincide with targets, the CRH-generated trajectory is stationary

QUESTION:

When do all local minima coincide with target points?



Li and Cassandras, IEEE TAC, 2006

BOSTON UNIVERSITY TEST BEDS

Christos G. Cassandras

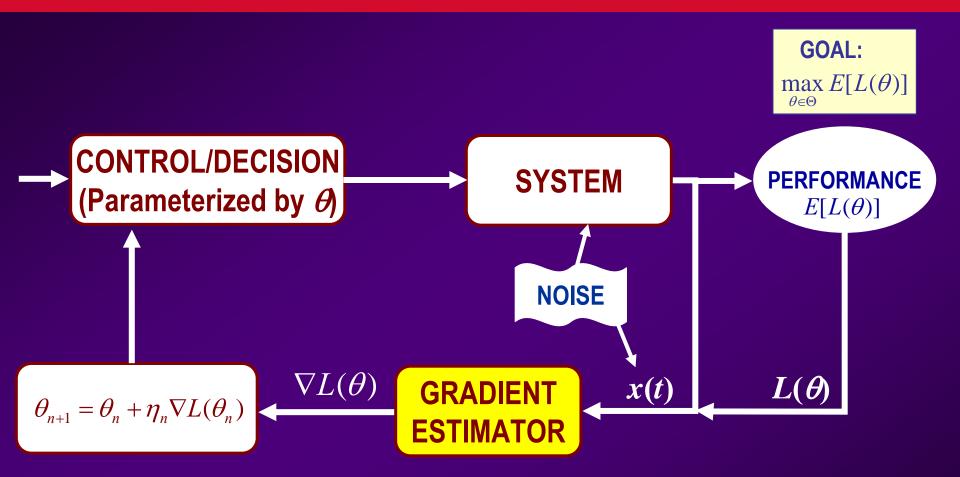
REWARD MAXIMIZATION DEMO

II. 2 Robots, 4 Targets Case

Christos G. Cassandras

EVENT-DRIVEN SENSITIVITY ANALYSIS

REAL-TIME STOCHASTIC OPTIMIZATION

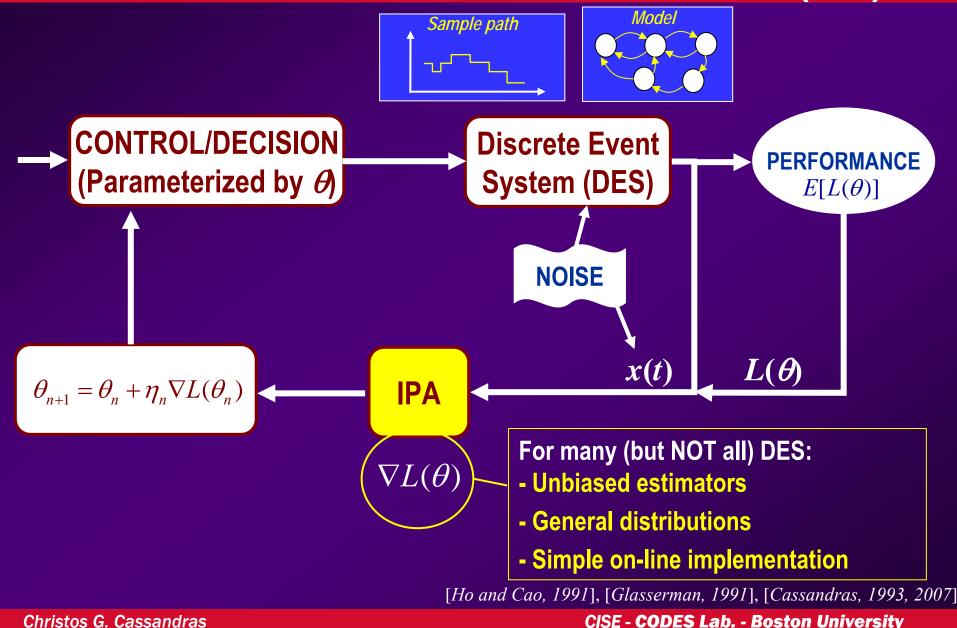


DIFFICULTIES: - $E[L(\theta)]$ **NOT** available in closed form

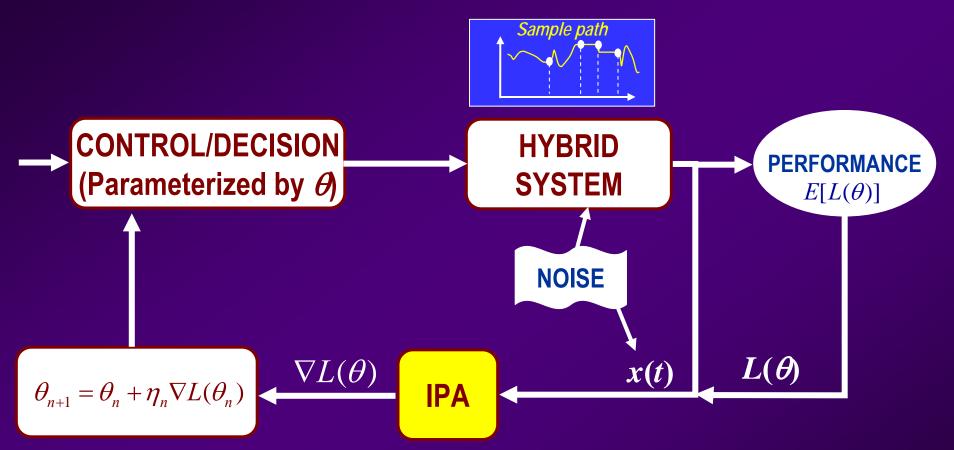
- $-\nabla L(\theta)$ not easy to evaluate
- - $\nabla L(\theta)$ may not be a good estimate of $\nabla E[L(\theta)]$

Christos G. Cassandras

REAL-TIME STOCHASTIC OPTIMIZATION FOR DES: INFINITESIMAL PERTURBATION ANALYSIS (IPA)



REAL-TIME STOCHASTIC OPTIMIZATION: *HYBRID SYSTEMS*



A general framework for an IPA theory in Hybrid Systems?

Christos G. Cassandras

PERFORMANCE OPTIMIZATION AND IPA

Performance metric (objective function):

$$T(\theta; x(\theta, 0), T) = E[L(\theta; x(\theta, 0), T)]$$

$$L(\theta) = \sum_{k=0}^{N} \int_{\tau_{k}}^{\tau_{k+1}} L_{k}(x, \theta, t) dt$$

IPA goal:- Obtain unbiased estimates of $\frac{dJ(\theta; x(\theta, 0), T)}{d\theta}, \text{ normally } \frac{dL(\theta)}{d\theta}$ - Then: $\theta_{n+1} = \theta_n + \eta_n \frac{dL(\theta_n)}{d\theta}$

OTATION:
$$x'(t) = \frac{\partial x(\theta, t)}{\partial \theta}, \quad \tau'_k = \frac{\partial \tau_k(\theta)}{\partial \theta}$$

Christos G. Cassandras

Ν

HYBRID AUTOMATA

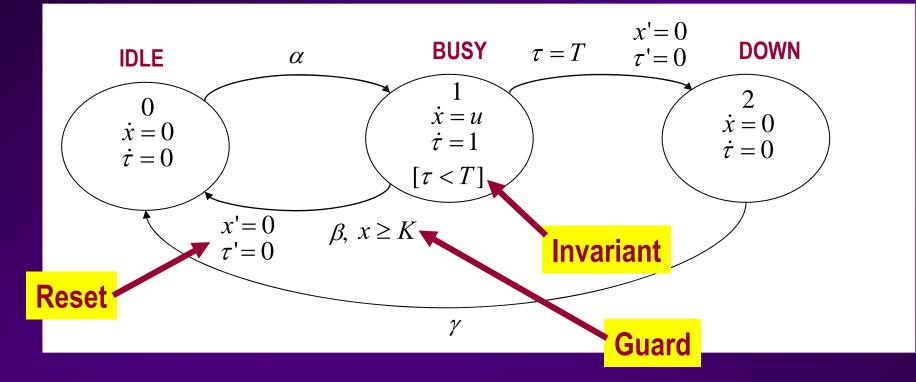
$$G_h = (Q, X, E, U, f, \phi, Inv, guard, \rho, q_0, \mathbf{x}_0)$$

- **Q**: set of discrete states (modes)
- *X*: set of continuous states (normally R^{*n*})
- **E**: set of events
- **U:** set of admissible controls
- **f**: vector field, $f: Q \times X \times U \to X$
- ϕ : discrete state transition function, $\phi: Q \times X \times E \to Q$
- *Inv*: set defining an invariant condition (domain), $Inv \subseteq Q \times X$
- *guard*: set defining a guard condition, $guard \subseteq Q \times Q \times X$
- ρ : reset function, $\rho : Q \times Q \times X \times E \to X$
- *q*₀: initial discrete state
- x₀: initial continuous state

Christos G. Cassandras

HYBRID AUTOMATA

Unreliable machine with timeouts



x(t): physical state of part in machine $\tau(t)$: clock

α : START, β : STOP, γ : REPAIR

Christos G. Cassandras

THE IPA CALCULUS

System dynamics over
$$(\tau_k(\theta), \tau_{k+1}(\theta)]$$
: $\dot{x} = f_k(x, \theta, t)$

NOTATION:
$$x'(t) = \frac{\partial x(\theta, t)}{\partial \theta}, \quad \tau'_k = \frac{\partial \tau_k(\theta)}{\partial \theta}$$

1. Continuity at events: $x(\tau_k^+) = x(\tau_k^-)$

Take $d/d\theta$:

$$x'(\tau_k^+) = x'(\tau_k^-) + [f_{k-1}(\tau_k^-) - f_k(\tau_k^+)]\tau'_k$$

If no continuity, use reset condition \Rightarrow

$$x'(\tau_k^+) = \frac{d\rho(q, q', x, \upsilon, \delta)}{d\theta}$$

Christos G. Cassandras

2. Take $d/d\theta$ of system dynamics $\dot{x} = f_k(x, \theta, t)$ over $(\tau_k(\theta), \tau_{k+1}(\theta)]$:

$$\frac{dx'(t)}{dt} = \frac{\partial f_k(t)}{\partial x} x'(t) + \frac{\partial f_k(t)}{\partial \theta}$$

Solve
$$\frac{dx'(t)}{dt} = \frac{\partial f_k(t)}{\partial x} x'(t) + \frac{\partial f_k(t)}{\partial \theta}$$
 over $(\tau_k(\theta), \tau_{k+1}(\theta)]$:

$$x'(t) = e^{\int_{\tau_k}^{t} \frac{\partial f_k(u)}{\partial x} du} \left[\int_{\tau_k}^{t} \frac{\partial f_k(v)}{\partial \theta} e^{-\int_{\tau_k}^{v} \frac{\partial f_k(u)}{\partial x} du} dv + x'(\tau_k^+) \right]$$

initial condition from 1 above

NOTE: If there are no events (pure time-driven system), IPA reduces to this equation

Christos G. Cassandras

3. Get τ'_k depending on the event type:

- Exogenous event: By definition, $\tau'_k = 0$
- Endogenous event: occurs when $g_k(x(\theta, \tau_k), \theta) = 0$

$$\tau'_{k} = -\left[\frac{\partial g}{\partial x}f_{k}(\tau_{k}^{-})\right]^{-1}\left(\frac{\partial g}{\partial \theta} + \frac{\partial g}{\partial x}x'(\tau_{k}^{-})\right)$$

- Induced events:

$$\tau'_{k} = -\left[\frac{\partial y_{k}(\tau_{k})}{\partial t}\right]^{-1} y'_{k}(\tau_{k}^{+})$$

Christos G. Cassandras

Ignoring resets and induced events:

1.
$$x'(\tau_k^+) = x'(\tau_k^-) + [f_{k-1}(\tau_k^-) - f_k(\tau_k^+)] \cdot \tau'_k$$

2.
$$x'(t) = e^{\int_{\tau_k}^{t} \frac{\partial f_k(u)}{\partial x} du} \left[\int_{\tau_k}^{t} \frac{\partial f_k(v)}{\partial \theta} e^{-\int_{\tau_k}^{v} \frac{\partial f_k(u)}{\partial x} du} dv + x'(\tau_k^+) \right]$$

3.
$$\tau'_{k} = 0$$
 or $\tau'_{k} = -\left[\frac{\partial g}{\partial x}f_{k}(\tau_{k}^{-})\right]^{-1}\left(\frac{\partial g}{\partial \theta} + \frac{\partial g}{\partial x}x'(\tau_{k}^{-})\right)$

2

Recall:

$$x'(t) = \frac{\partial x(\theta, t)}{\partial \theta}$$

$$\tau'_{k} = \frac{\partial \tau_{k}(\theta)}{\partial \theta}$$

Cassandras et al, Europ. J. Control, 2010

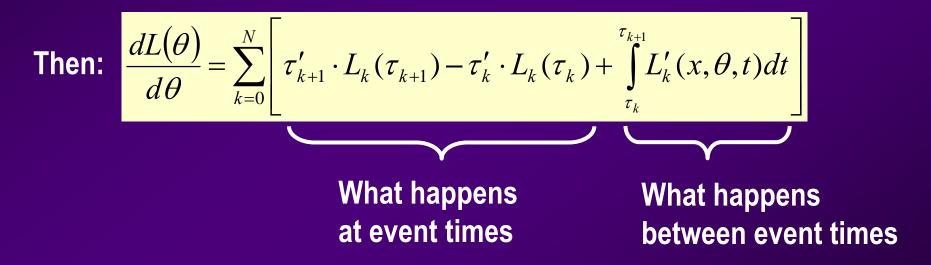
Christos G. Cassandras

 $x'(\tau_k^-)$

Back to performance metric:

$$L(\theta) = \sum_{k=0}^{N} \int_{\tau_k}^{\tau_{k+1}} L_k(x,\theta,t) dt$$

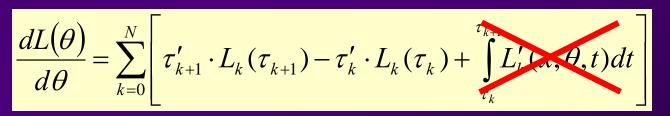
NOTATION:
$$L'_k(x,\theta,t) = \frac{\partial L_k(x,\theta,t)}{\partial \theta}$$



THEOREM 1: If either 1,2 holds, then $dL(\theta)/d\theta$ depends only on information available at event times τ_k :

1. $L(x, \theta, t)$ is independent of t over $[\tau_k(\theta), \tau_{k+1}(\theta)]$ for all k **2.** $L(x, \theta, t)$ is only a function of x and for all t over $[\tau_k(\theta), \tau_{k+1}(\theta)]$: $\frac{d}{dt} \frac{\partial L_k}{\partial x} = \frac{d}{dt} \frac{\partial f_k}{\partial x} = \frac{d}{dt} \frac{\partial f_k}{\partial \theta} = 0$

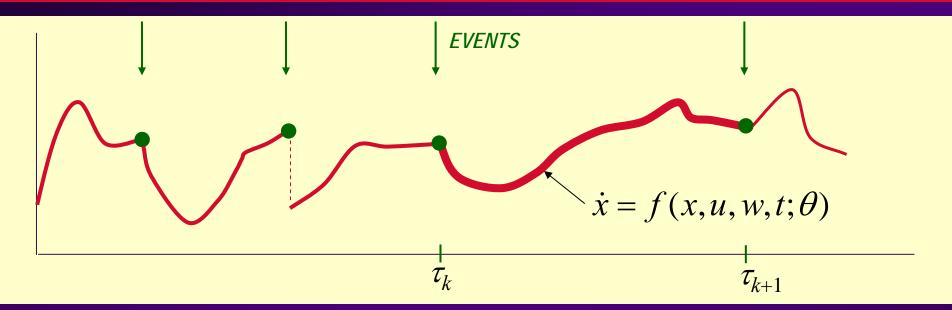
[Yao and Cassandras, 2010]



IMPLICATION: - Performance sensitivities can be obtained from information limited to event times, which is easily observed

- No need to track system in between events !

Christos G. Cassandras



Evaluating $x(t; \theta)$ requires full knowledge of w and f values (obvious)

However, $\frac{dx(t;\theta)}{d\theta}$ may be *independent* of *w* and *f* values (*NOT* obvious)

It often depends only on: - event times τ_k

- possibly $f(au_{k+1}^-)$

Christos G. Cassandras

In many cases:

- *No need for a detailed model* (captured by f_k) to describe state behavior in between events

- This explains why *simple abstractions of a complex stochastic system* can be adequate to perform sensitivity analysis and optimization, as long as event times are accurately observed and local system behavior at these event times can also be measured.

This is true in *abstractions of DES as HS* since:
 Common performance metrics (e.g., workload) satisfy THEOREM 1

SOLVING PROBLEMS WITH LINEAR TIME-DRIVEN DYNAMICS

$$\min_{u_1,\ldots,u_K} \sum_{k=0}^K \left[\int_{\tau_k}^{\tau_{k+1}} L_k(x(t), u(t)) dt + \psi_i(\tau_k) \right]$$
s.t.

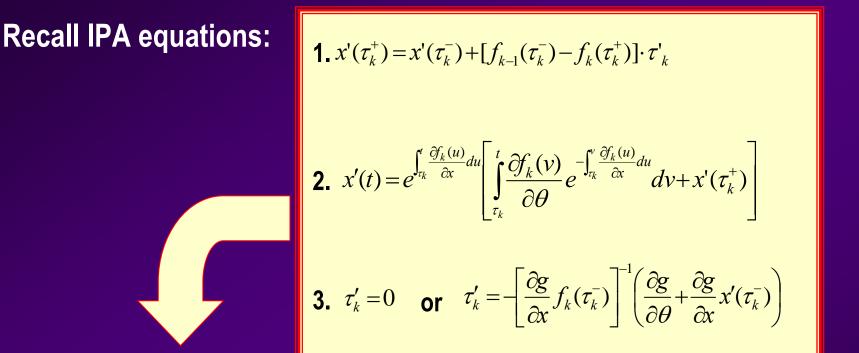
$$\dot{x} = a_k x + b_k u_k, \quad t \in (\tau_k, \tau_{k+1}]$$

Common to parameterize controls using basis functions $\beta_l(t)$:

$$u_k(t) = \sum_{l=0}^L \theta_{k,l} \beta_l(t)$$

Christos G. Cassandras

SOLVING PROBLEMS WITH LINEAR TIME-DRIVEN DYNAMICS



When endogenous event $[g(x(\theta, \tau_k), \theta) = 0]$ occurs at τ_k :

$$\implies \frac{\partial x(\tau_k^+)}{\partial \theta_{k,l}} = \frac{\partial x(\tau_k^-)}{\partial \theta_{k,l}} + \left[(a_{k-1} - a_k) x(\tau_k) + b_{k-1} \sum_{l=0}^L \theta_{k-1,l} \beta_l(\tau_k) - b_k \sum_{l=0}^L \theta_{k,l} \beta_l(\tau_k) \right] \frac{\partial \tau_k}{\partial \theta_{k,l}}$$

$$\mathbf{2} \Longrightarrow \frac{\partial x(t)}{\partial \theta_{k,l}} = e^{a_k(t-\tau_k)} \left[\frac{b_k \beta_l}{a_k} \left[1 - e^{-a_k(t-\tau_k)} \right] + \frac{\partial x(\tau_k^+)}{\partial \theta_{k,l}} \right]$$

Christos G. Cassandras

CYBER-PHYSICAL SYSTEMS

Christos G. Cassandras