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 What is a “Smart City” ? 
 
 

 A Data-Driven Dynamic Resource Allocation Framework 

 

 Examples of Smart City problems and solutions: 
 - Adaptive Traffic Light Control 
 - Smart Parking 
 - Street Bump 
 - Traffic control: eliminating the Price of Anarchy (PoA) 
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WHAT IS A “SMART CITY” ? 
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“A city well performing in a forward-looking 
way in [economy, people, governance, 
mobility, environment, and living] built on the 
smart combination of endowments and 
activities of self-decisive, independent and 
aware citizens.”                Giffinger et al, 2007 

Smart Sustainable Cities use information and 
communication technologies (ICT) to be more 
intelligent and efficient in the use of 
resources, resulting in cost and energy 
savings, improved service delivery and quality 
of life, and reduced environmental footprint--
all supporting innovation and the low-carbon 
economy.                                      Cohen, 2014 Hitachi's vision for the Smart Sustainable 

City seeks to achieve concern for the global 
environment and lifestyle safety and 
convenience through the coordination of 
infrastructure. Smart Sustainable Cities 
realized through the coordination of 
infrastructures consist of two infrastructure 
layers that support consumers' lifestyles 
together with the urban management 
infrastructure that links these together using 
IT              Hitachi Web, 2014 

“We believe a city to be smart when 
investments in human and social capital and 
traditional (transport) and modern (ICT) 
communication infrastructure fuel sustainable 
economic growth and a high quality of life, with 
a wise management of natural resources, 
through participatory governance.”  
      Meijer and Bolívar, 2013 
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Smart Sustainable Cities use information and 
communication technologies (ICT) to be more 
intelligent and efficient in the use of resources, 
resulting in cost and energy savings, improved 
service delivery and quality of life, and reduced 
environmental footprint--all supporting innovation 
and the low-carbon economy.                                      
Cohen, 2014 
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CREDIT:  Fernando Livschitz 
 
http://www.fastcodesign.com/3035870/filmmaker-creates-worlds-most-terrifying-traffic-
intersection 



COLLECTING DATA IS NOT “SMART”  
- JUST A NECESSARY STEP TO 

BEING “SMART” 

PROCESSING DATA TO MAKE 
GOOD DECISIONS IS “SMART” 

INFO 

INFO ACTION 
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WHAT IS REALLY “SMART” ? 



WHAT IS A “SMART CITY” ? 
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• Ubiquitous wireless connectivity of users and resources 
 

• Abundance of real-time data shared among users and resources 

• Bring in feedback control mechanisms 
 
• Reduce/eliminate much of the infrastructure 
             (e.g., Connected Automated Vehicles) 

 
• Achieve system-centric (social) optimality rather than 
     user-centric (sel�fish) optimality - the SOCIAL component in CPS 

Some SMART things we can do 
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DYNAMIC RESOURCE ALLOCATION 
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• Reserve resource 
• De-assign resource 
• Change resource price 
• Steer vehicle 
• … 

CONTROL 
• New request 
• Cancel request 
• Resource freed 
• … 

EVENTS 
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DATA-DRIVEN STOCHASTIC OPTIMIZATION 

CONTROL/DECISION 
(Parameterized by θ) SYSTEM PERFORMANCE 

NOISE 
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REAL-TIME DATA 



DATA-DRIVEN STOCHASTIC OPTIMIZATION IN DES: 
INFINITESIMAL PERTURBATION ANALYSIS (IPA)  

CONTROL/DECISION 
(Parameterized by θ) 

Discrete Event 
System (DES) 

PERFORMANCE 

L(θ) 
IPA 

NOISE 
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Sample path 

For many (but NOT all) DES: 
- Unbiased estimators 
- General noise distributions 
- Simple on-line implementation 
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[Ho and Cao, 1991, Glasserman, 1991, Cassandras, 1993, 2008] 



REAL-TIME STOCHASTIC OPTIMIZATION: 
CPS (HYBRID) SYSTEMS 
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A general framework for an IPA theory in Hybrid Systems 

Sample path 
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HYBRID AUTOMATA STOCHASTIC HYBRID AUTOMATA 

),  ,( txfx k=

Event at time τk(θ) Event at time τk+1(θ) 

kth discrete state (mode) 

θ : control parameter,             (system design parameter,  
               parameter of an input process,  
               or parameter that characterizes a control policy) 

Θ∈θ
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THE IPA CALCULUS 
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[Wardi et al, IEEE TAC, 2010; Cassandras et al, Europ. J. Control, 2010] 



IPA: THREE FUNDAMENTAL EQUATIONS * 
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* Some more complicated cases omitted 



IPA PROPERTIES 

1.  ROBUSTNESS 
 

2. DECOMPOSABILITY 
 

3. SCALABILITY 
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Yao and Cassandras, J. DEDS, 2011 



IPA PROPERTIES 

Back to performance metric:  ( ) ∑ ∫
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1. ROBUSTNESS 

THEOREM 1: If either 1,2 holds, then dL(θ)/dθ  depends only on 
information available at event times τk: 
 
1. L(x,θ,t) is independent of t over [τk(θ), τk+1(θ)) for all k 

2. L(x,θ,t) is only a function of x and for all t over [τk(θ), τk+1(θ)): 
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IMPLICATION:  - Performance sensitivities can be obtained from information 
    limited to event times, which is easily observed  
  - No need to track system in between events ! 
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1. ROBUSTNESS 

EVENTS 

OBVIOUS:           Evaluating          requires full knowledge of w and f );( θtx

NOT OBVIOUS:          may be independent of w and f 
θ

θ
d
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2. DECOMPOSABILITY 

THEOREM 2: Suppose an endogenous event occurs at τk with switching 
function g(x,θ).  
If             , then          is independent of  fk−1. 

If, in addition,    then   
 

IMPLICATION:  Performance sensitivities are often reset to 0  
    ⇒ sample path can be conveniently decomposed 
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3. SCALABILITY 

OBSERVATION: IPA is entirely event-driven 
    ⇒ scales with event set size, not state space!  

  Christos G. Cassandras    CISE - CODES Lab. - Boston University 
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IPA PROPERTIES 

- No need for a detailed model (captured by fk) to describe state behavior 
  in between events 
 
- This explains why simple abstractions of a complex stochastic system  
  can be adequate to perform sensitivity analysis and optimization,  
  as long as event times are accurately observed and local system behavior  
  at these event times can also be measured 
 

In many cases: 
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A SMART CITY 
APPLICATION: 

ADAPTIVE 
TRAFFIC LIGHT CONTROL 

 
 
 
 
 
 
 



TRAFFIC LIGHT CONTROL - BACKGROUND  
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• Mixed Integer Linear Programming (MILP) [Dujardin et al, 2011] 

• Extended Linear Complementarity Problem (ELCP) [DeSchutter, 1999] 

• MDP and Reinforcement Learning [Yu et al., 2006] 

• Game Theory [Alvarez et al., 2010] 

• Evolutionary algorithms [Taale et al., 1998] 

• Fuzzy Logic [Murat et al., 2005] 

• Expert Systems [Findler and Stapp, 1992] 

• Perturbation Analysis 

A basic binary switching control (GREEN – RED) problem 
with  a long history…  



TRAFFIC LIGHT CONTROL - BACKGROUND  
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• Perturbation Analysis [Panayiotou et al., 2005] 

 Use a Hybrid System Model: Stochastic Flow Model (SFM)  

SFM DES 

[Geng and Cassandras, 2012] 
Single 

Intersection 

Vehicle queue 

Aggregate states into modes and keep only events causing mode transitions 



SINGLE-INTERSECTION MODEL 
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Traffic light control: 
],,,[ 4321 θθθθθ =

GREEN light cycle 
at queue n = 1,2,3,4 

OBLECTIVE: 
Determine θ  to minimize  
total weighted vehicle queues 
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SINGLE-INTERSECTION MODEL 
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- Observe events and event times, estimate   through  
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HYBRID SYSTEM STATE DYNAMICS 
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 GREEN light “clock” 

Control: GREEN light cycle 



HYBRID SYSTEM STATE DYNAMICS 
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Queue content 

Vehicle departure rate process 

Vehicle arrival rate process 

[RESOURCE DYNAMICS] 

[USER DYNAMICS] 



TYPICAL SIMULATION RESULTS 
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9-fold cost reduction 

Traffic pattern changes 

Adaptivity 
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EXTENSIONS 

- Two intersections with blocking    
   [Geng and Cassandras, J. DEDS, 2015] 
 
- Quasi-Dynamic TLC: assume partially observable queues 
   [Fleck, Cassandras and Geng, IEEE TCST, 2016] 
 
- Network of intersections: exploit IPA SCALABILITY property 



• Automatically adapt RED/GREEN light cycles based on observed data 
• Predict and alleviate congestion over entire urban network 
• Reduce waiting times, congestion 
• Reduce pollution and fuel waste 
  Christos G. Cassandras    CISE - CODES Lab. - Boston University 
 

NETWORK-WIDE TRAFFIC LIGHT CONTROL 



Two ways of looking at this problem: 
 
1. Control Traffic Lights (infrastructure intensive) 
2. Control speed/acceleration of vehicle assuming connectivity between 
       vehicles (V2V) and traffic lights (V2I) 
       (e.g., adjust speed to make a GREEN just in time) 
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NETWORK-WIDE TRAFFIC LIGHT CONTROL 



 
 
 
 
 
 

SMART PARKING 
 
 
 
 
 
 
 

iPhone app 



30% of vehicles on the road in the downtowns of 
major cities are cruising for a parking spot. It 
takes the average driver 7.8 minutes to find a 
parking spot in the downtown core of a major city. 

R. Arnott, T.Rave, R.Schob, Alleviating Urban Traffic 
Congestion. 2005 

GUIDANCE-BASED PARKING – DRAWBACKS… 
Drivers: 
• May not find a vacant space 
• May miss better space 
• Processing info while driving 

City: 
• Imbalanced parking utilization 
• May create ADDED CONGESTION 
  (as multiple drivers converge 
    to where a space exists) 

Searching for parking  ⇒  Competing for parking 

SMART PARKING 
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BEST 
PARKING SPOT 

LEAST DISTANCE from A 

           + 
LEAST COST 

                  + 
     RESERVE IT 
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SMART PARKING 

[Geng and Cassandras, IEEE Trans. on Intelligent Transportation Systems, 2013] 



DYNAMIC RESOURCE ALLOCATION 
PROBLEM FORMULATION 
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• Parking space availability 
     detection 

 
 

• Vehicle localization 
 
 

• System-Driver 
     communication 
  
 
• Parking reservation 

SMART PARKING – IMPLEMENTATION 

 Standard sensors  
     (e.g., magnetic, cameras) 
 Wireless sensor networking  

 
 GPS 

 
 

 Smartphone 
 Vehicle navigation system 

 
 Red/Green/Yellow light system 
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Currently in operation at 
BU garage 
(with Smartphone app:  
BU Smart Parking) 

http://smartpark.bu.edu/smartparking_ios6/login.php 

  Christos G. Cassandras    CISE - CODES Lab. - Boston University 
 

SMART PARKING - IMPLEMENTATION 

2011 IBM/IEEE Smarter Planet Challenge 
prize 



 
 
 
 
 

STREET BUMP: 
DETECTING “BUMPS” 

THROUGH SMARTPHONES 
+ DATA ANALYTICS 

 
 
 
 
 
 

iPhone app 

2014 IBM/IEEE Smarter Planet 
Challenge prize 
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STREET BUMP – PROCESSING “BIG DATA” 

• Detect obstacles using iPhone accelerometer and GPS  
   ⇒ no infrastructure needed 
 

• Send to central server through Street Bump app 
 

• Process data to classify obstacles:  
Anomaly detection and clustering algorithms, 
similar to cybersecurity problems 

• Detect “actionable” obstacles 

• Prioritize and dispatch Smart City crews to fix problems: 
 DATA-DRIVEN DYNAMIC RESOURCE ALLOCATION 

[Brisimi et al, IEEE Access, 2016] 



  Christos G. Cassandras    CISE - CODES Lab. - Boston University 
 

STREET BUMP – PROCESSING “BIG DATA” 

 Methodologies used: 

• Anomaly detection, Machine Learning algorithms 
 

• Bump signal signature analysis: REGULARITY METRIC 
 

• Bump signal randomness content: ENTROPY METRIC  

NON-ACTIONABLE 
(Flat Casting) 

ACTIONABLE 
(Pothole) 
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STREET BUMP – ANOMALY INDEX RANKED LIST 

TOP-10 ACTIONABLE OBSTACLES 



 
 
 
 

SHARING RESOURCES: 
THE 

“PRICE OF ANARCHY” 
 
 
 
 
 



 
 
 
 
 
 

TRAFFIC CONTROL 
 
 
 
 
 
 
 

The BU Bridge mess, Boston, MA (simulation using VISSIM) 



… EVEN IF WE KNOW 
      THE ACHIEVABLE  
   OPTIMUM IN A  
    TRAFFIC NETWORK ??? 
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WHY CAN’T WE IMPROVE TRAFFIC… 

Because: 
 
• Not enough controls (traffic lights, tolls, speed fines) 
     → No chance to unleash the power of feedback! 
 
• Not knowing other drivers’ behavior leads to poor decisions  
     (a simple game-theoretic fact) 
      → Drivers seek individual (selfish) optimum, 
            not system-wide (social) optimum 

PRICE OF ANARCHY 
(POA) 



  Christos G. Cassandras    CISE - CODES Lab. - Boston University 
 

GAME-CHANGING OPPORTUNITY:  
 CONNECTED AUTOMATED VEHICLES (CAVs)  

NO TRAFFIC LIGHTS, NEVER STOP… 

FROM (SELFISH) “DRIVER OPTIMAL” 
TO (SOCIAL) “SYSTEM OPTIMAL”  
TRAFFIC CONTROL 
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HOW TO MEASURE THE PoA ? 

LINK a FLOW xa 

COST FUNCTION ta (xa) 

Under USER-CENTRIC control,           is the equilibrium flow 
Under SYSTEM-CENTRIC control,             is the equilibrium flow 

user
ax

social
ax

Eastern Mass. 
13,000+ road segments 
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HOW TO MEASURE THE PoA ? 

1
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PoA

 all

socialsocial
 all
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xtx
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Can we measure/estimate the PoA ? 



DIFFICULTIES AS THINGS NOW STAND… 

 We don’t know user COST FUNCTIONS 

 We don’t know  user ORIGIN-DESTINATION pairs (No DEMAND model) 

 We can’t  solve the SYSTEM OPTIMALITY problem 

We can’t  exploit CAVs We can’t assess the value of investing 
in CAV-based technologies, since we 
can’t evaluate the PRICE OF ANARCHY 

BUT WE DO HAVE PLENTY OF DATA…. 
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INVERSE OPTIMIZATION PROBLEM 

BACKWARD optimization: 
 
- Data reveal a (selfish) equilibrium (Wardrop/Nash equilibrium) 
- What are the (virtual) cost functions that best fit the data and lead to 

this equilibrium? 

KEY IDEA: 

 
FORWARD optimization: 
 
- Use these cost functions to find (social) optimal traffic flows 

- Estimate the PRICE OF ANARCHY 

  Christos G. Cassandras    CISE - CODES Lab. - Boston University 
 



PRICE OF ANARCHY – BOSTON AREA 2012 

Zhang et al, IEEE CDC, 2016 - MoA22 
 

INTERPRETATION: 
We can improve 
traffic by more than 
100% if we can 
direct vehicles 
(e.g., using CAVs) 
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A DECENTRALIZED 
OPTIMAL CONTROL 

FRAMEWORK 
FOR CAVs 

 
 
 
 
 
 

A story for another time, but here is what 
the end of its first chapter looks like… 

[Zhang et al, ACC, 2016] 



  Christos G. Cassandras    CISE - CODES Lab. - Boston University 
 

WHO NEEDS TRAFFIC LIGHTS? 

With traffic lights With decentralized control of CAVs 

One of the worst-designed double intersections ever…  
(BU Bridge – Commonwealth Ave, Boston) 



WHO NEEDS TRAFFIC LIGHTS? 
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CONCLUSIONS  

  Christos G. Cassandras    CODES Lab. - Boston University 
 

 “Smart Cities” are complex CYBER-PHYSICAL systems that 
can be studied in a stochastic hybrid system setting 

 Capitalize on WIRELESS NETWORKING + BIG DATA  
 + DATA-DRIVEN CONTROL and OPTIMIZATION METHODS 
 
 “CONNECTED VEHICLES” provide a tremendous 
 opportunity for feedback methods, 
  game theoretic approaches, no infrastructure 

 What about HUMANS? Need to expand to  
  CYBER - SOCIAL - PHYSICAL systems 
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