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TIME-DRIVEN v EVENT-DRIVEN CONTROL
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OUTLINE

= Reasons for EVENT-DRIVEN Control, Communication, and
Optimization

= EVENT-DRIVEN Control in Distributed Wireless Systems

= EVENT-DRIVEN Sensitivity Analysis for Hybrid Systems
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REASONS FOR EVENT-DRIVEN
MODELS, CONTROL, OPTIMIZATION

= Many systems are naturally Discrete Event Systems (DES)
(e.g., Internet)
— all state transitions are event-driven

= Most of the rest are Hybrid Systems (HS)
— some state transitions are event-driven

= Many systems are distributed
— components interact asynchronously (through events)

= Time-driven sampling inherently inefficient (“open loop” sampling)

Christos G. Cassandras CODES Lab. - Boston University



REASONS FOR EVENT-DRIVEN
MODELS, CONTROL, OPTIMIZATION

= Many systems are stochastic
— actions needed in response to random events

= Event-driven methods provide significant advantages in
computation and estimation quality

= System performance is often more sensitive to event-driven
components than to time-driven components

= Many systems are wirelessly networked — energy constrained
— time-driven communication consumes significant energy
UNNECESSARILY!
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CYBER-PHYSICAL SYSTEMS
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TIME-DRIVEN v EVENT-DRIVEN SYSTEMS

TIME-DRIVEN STATES STATE SPACE:
SYSTEM X=%9R

DYNAMICS:
x = f(x,t)

STATES STATE SPACE:
EVENT-DRIVEN X = { . S }
SYSTEM - S_I_ y 99 1S3 194

DYNAMICS:
x'= f(x,e)

A EVENTS
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SYNCHRONOUS v ASYNCHRONOUS BEHAVIOR

Indlstlngmshable eventsi

Wasted clock ticks
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SYNCHRONOUS v ASYNCHRONOUS COMPUTATION
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EVENT-DRIVEN
CONTROL

IN DISTRIBUTED
(USUALLY WIRELESS)

SYSTEMS



MOTIVATIONAL PROBLEM: COVERAGE CONTROL

Deploy sensors to maximize “event” detection probability

— unknown event locations

— event sources may be mobile
— sensors may be mobile

Perceived event density (data sources) over given region (mission space)

Christos G. Cassandras CODES Lab. - Boston University
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COVERAGE: PROBLEM FORMULATION

= N mobile sensors, each located at s,e R?

= Data source at x emits signal with energy E

= Signal observed by sensor node I (ats;)

= SENSING MODEL:
p.(X,s.) = P[Detected by 1| A(X),S;]
( A(x) = data source emits at x )

= Sensing attenuation:
p:(x, s;) monotonically decreasing in d.(x) = ||x - S|

Christos G. Cassandras CODES Lab. - Boston University



COVERAGE: PROBLEM FORMULATION

= Joint detection prob. assuming sensor independence

(s=1s...,sy] : node locations)
Event sensing probability

= OBJECTIVE: Determine locations s = [s,,...,s,] to
maximize total Detection Probability:

max j R(X)P(x,s)dx

Perceived event density

Christos G. Cassandras CODES Lab. - Boston University



DISTRIBUTED COOPERATIVE SCHEME
= Set

)= R(x){l— ([-p (x)]}dx

= Maximize H(s,,...,s\) by forcing nodes to move using
gradient information:

or 8pk(x) Sk — d
ask ‘IR(X).EL P13 00 0 oo™

Desired displacement = V- At

Cassandras and Li, EJC, 2005

Zhong and Cassandras, |IEEE TAC, 2011
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DISTRIBUTED COOPERATIVE SCHEME CONTINUED

... has to be autonomously evaluated by each node so
as to determine how to move to next position:

» Use truncated p;(x) = Q replaced by node neighborhood €,
» Discretize p;(x) using a local grid

Christos G. Cassandras CODES Lab. - Boston University



DISTRIBUTED COOPERATIVE OPTIMIZATION

min H(s,,...,Sy)

N system components
(processors, agents, vehicles, nodes),
one common objective:

min H(s,,...,Sy)

Sy ..

s.t. constraints on each s,

1

s.t. constraintson s,

min H(s,,...,Sy)

N

s.t. constraintson s,
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DISTRIBUTED COOPERATIVE OPTIMIZATION

Controllable state
1=1,...

5, (k +1) = 5;(k) + ;d; (s(k))

Update Direction, usually
d; (s(k)) =-V;H(s(k))

min H(s,,...,Sy)

s.t. constraintson s
| requires knowledge of all s;,...,Sy

Inter-node communication

Christos G. Cassandras CODES Lab. - Boston University




SYNCHRONIZED (TIME-DRIVEN) COOPERATION

COMMUNICATE + UPDATE

] e—e———————— — — —

S o — — — — — — — —

Drawbacks:
= Excessive communication (critical in wireless settings!)
= Faster nodes have to wait for slower ones
= Clock synchronization infeasible
» Bandwidth limitations
= Security risks

Christos G. Cassandras CODES Lab. - Boston University



ASYNCHRONOUS COOPERATION

= Nodes not synchronized, delayed information used

Update frequency for each node )
is bounded S;(k+1) =s;(k) + «;d; (s(k))

> —
+ converges
technical conditions

Bertsekas and Tsitsiklis, 1997
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ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION

UPDATE
COMMUNICATE

= UPDATE at I : locally determined, arbitrary (possibly periodic)
= COMMUNICATE from 1 : only when absolutely necessary

Christos G. Cassandras CODES Lab. - Boston University



WHEN SHOULD A NODE COMMUNICATE?

Node state at any time t : x;(t)

= Si(k) = %;(t)
Node state at t, : Si(k)

AT UPDATETIMEt, : s (k) : node j state estimated by node i

Estimate examples:

= EHQERHER(I] Most recent value

t, — 7’ (K) .
k A 'a‘°di(xi(71(k))) Linear prediction

J

st (k) = x, (2 (K)) +

Christos G. Cassandras CODES Lab. - Boston University



WHEN SHOULD A NODE COMMUNICATE?

AT ANY TIME t :

= x/(t) : node i state estimated by node j

= |f node i knows how j estimates its state, then it can evaluate x/(t)

= Node I uses
* Its own true state, x;(t)

 the estimate that j uses, x!(t)

. and evaluates an ERROR FUNCTION g(x;(t), X/ (t))

Error Function examples: Hxi (t) — x/ (t)Hl, Hxi (t)—x) (t)

2
Christos G. Cassandras CODES Lab. - Boston University



WHEN SHOULD A NODE COMMUNICATE?

Compare ERROR FUNCTION g(x, (t), X/ (t)) to THRESHOLD &

Node | communicates its state to node j only when it detects that
its true state x;(t) deviates from J' estimate of it xJ(t)

sothat g(x, (t),x (1)) 4,

= Event-Driven Control

Christos G. Cassandras CODES Lab. - Boston University



CONVERGENCE

Asynchronous distributed state update process at each I:

5. (k) = {Kéudi (s’ (k)H if k sends update

0. (k-1 otherwise

THEOREM: Under certain conditions, there exist positive constants
o and K, such that

limVH (s(k)) =0

Zhong and Cassandras, IEEE TAC, 2010

INTERPRETATION:

Event-driven cooperation achievable with

minimal communication requirements = energy savings
Christos G. Cassandras CODES Lab. - Boston University



COONVERGENCE WHEN DELAYS ARE PRESENT

j
g\X, X

Error function trajectory with
NO DELAY

i i i ]
(4 7,07 T3

o, o} 1,0,
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COONVERGENCE WHEN DELAYS ARE PRESENT

Add a boundedness assumption:

ASSUMPTION: There exists a non-negative integer D such

that if a message Is sent before t, , from node 1 to node |, it
will be received before t,.

INTERPRETATION: at most D state update events can occur between a node
sending a message and all destination nodes receiving this message.

THEOREM: Under certain conditions, there exist positive constants
a and K such that

limVH (s(k)) =0

k—o0

NOTE: The requirements on o and K; depend on D and they are tighter.

Zhong and Cassandras, IEEE TAC, 2010
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SYNCHRONOUS v ASYNCHRONOUS

OPTIMAL COVERAGE PERFORMANCE

Energy savings + Extended lifetime
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SYNCHRONOUS v ASYNCHRONOUS:

No. of communication events SYNCHRONOUS v ASYNCHRONOUS:
for a deployment problem with obstacles

Achieving optimality
In a problem with obstacles

CODES Lab. - Boston University
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DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH
OBSTACLES — SIMULATED AND REAL

Nodes # E | Low Detection Boost |1000 1000000 | 7.0249856E7 | Evaluate Objectivg Event deteCti Qn .
i} g 14 25 a0 35 40 45 al 55 60 prObabIIIty P(;L"__.,S)
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.

Max Speed @ Sensing Decay 0.030 Sensing Range 57.0] Max Norm IE Kdelta |0.0 Est. Threshold |0.0
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DEMO: REACTING TO EVENT DETECTION

Important to note:

There Is no external
control causing this
behavior. Algorithm
Includes tracking
functionality
automatically

Max Speed [4.0| Sensing Decay 0.08  Sensing Range [30.0] Max Norm [1.0) Kdelta [0.0 | Est. Threshold [0.0 | Comm.
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BOSTON UNIVERSITY TEST BEDS
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REAL-TIME STOCHASTIC OPTIMIZATION
GOAL:
max E[L(0)]
CONTROL/DECISION
P (Parameterized by 6) PEREF?LF%)/}NCE

-

VL(6O
R — (e

DIFFICULTIES: - E[L(6)] NOT available in closed form
- VL(8) not easy to evaluate
- VL (&) may not be a good estimate of VE[L(8)]

Christos G. Cassandras CISE - CODES Lab. - Boston University




REAL-TIME STOCHASTIC OPTIMIZATION FOR DES:
INFINITESIMAL PERTURBATION ANALYSIS (IPA)

Sample path Model

e._ 0

el
CONTROL/DECISION Discrete Event SEREORMANCE
Parameterlzed by 6 System (DES) E[L(0)]

|

0n+1 = Qn +77nVL(Hn) —
For many (but NOT all) DES:
- Unbiased estimators
- General distributions

- Simple on-line implementation

[Ho and Cao, 1991], [Glasserman, 1991], [Cassandras, 1993, 2008]
Christos G. Cassandras CISE - CODES Lab. - Boston University




REAL-TIME STOCHASTIC OPTIMIZATION:
HYBRID SYSTEMS

Sample path

CONTROL/DECISION HYBRID PERFORMANCE

(Parameterized by 6 SYSTEM E[L(0)]

VL(O
0n+1 = Qn +77nVL(0n) A

A general framework for an IPA theory in Hybrid Systems?

Christos G. Cassandras CISE - CODES Lab. - Boston University



PERFORMANCE OPTIMIZATION AND IPA

Performance metric (objective function):

J(0;%(0,0),T)=E[L(6; x(8,0),T )]
i |

N Tk+1

L(0)=2" [L.(x.0,t)dt

k:O Tk

IPA goal:

- Obtain unbiased estimates of aJ (9; X(Q’O)’T) - normally d'—(g)
do do
Then: 9 =6 +n dL(4,)
ar n n de
/ 8X(6’,t) , _0,(0)
L] t p— : f—
NOTATION: X (t)=—2=, ni=—+

Christos G. Cassandras C/SE - CODES Lab. - Boston University



HYBRID AUTOMATA
G, =(Q,X,E,U, f,9,Inv,guard, p,q,,X,)

set of discrete states (modes)

set of continuous states (normally R")

set of events

set of admissible controls

vector field, f:QxXxU — X

discrete state transition function, ¢:Qx X xE - Q

 ~C M X O

Inv:  set defining an invariant condition (domain), Invc Qx X
guard: set defining a guard condition, guard c QxQx X

p- reset function, p:QxQx X xE — X

oS Initial discrete state

X, Initial continuous state
Christos G. Cassandras CODES Lab. - Boston University



HYBRID AUTOMATA

Unreliable machine with timeouts

X(t) : physical state of part in machine
7(t): clock

a . START, . STOP, y: REPAIR

Christos G. Cassandras CODES Lab. - Boston University



THE IPA CALCULUS



IPA: THREE FUNDAMENTAL EQUATIONS

System dynamics over (7(6), 7,1(0]: x= f (x,6,1)

< (1) x@t) , _og(0)

—= ’Z'k

NOTATION: T Py

1. Continuity at events: x(z,) = x(z,)

Take d/d: X'(50) =X () + [ (@)~ £ I

dp(a,9', x,0, )

If no continuity, use reset condition = EE(ME 7

Christos G. Cassandras C/SE - CODES Lab. - Boston University



IPA: THREE FUNDAMENTAL EQUATIONS

2. Take d/d@of system dynamics x = f, (X, 8,t) over (7,(6), 5.1(0)]:

dx'(t) _ of, (t)

w(t)+ )
dt OX 00

dx'(t) of (t) ,,.. of(t _
Solve %z%ﬂth% over (7(0), 5.1(0)]:

Initial condition from 1 above

NOTE: If there are no events (pure time-driven system),
IPA reduces to this equation

Christos G. Cassandras C/SE - CODES Lab. - Boston University



IPA: THREE FUNDAMENTAL EQUATIONS

3. Get 7, depending on the event type:

- Exogenous event: By definition,

- Endogenous event: occurs when 9, (x(¢,7,),0)=0

- Induced events:

Christos G. Cassandras C/SE - CODES Lab. - Boston University



IPA: THREE FUNDAMENTAL EQUATIONS

Ignoring resets and induced events:

Recall:
L X(z)) =X (z) +[fia () = (w7 ox(6,1)
=54
r 8Tk(0)
T 00

X' (7, 2 ES& N\ "
e Cassandras et al, Europ. J. Control, 2010

Christos G. Cassandras CISE - CODES Lab. - Boston University




IPA PROPERTIES

N Tk+

Back to performance metric:  L(0)= Z ij (x,0,t)dt
k=0 ¢,
, oL, (x,6,t)
NOTATION: L/(x,6,t)=
olv
dL(0) & , i
Then: % = Z T L (r)—7-L(r,)+ j L, (x,0,t)dt
k=0 Tk
" J \\ J
g Y
What happens What happens
at event times between event times

Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA PROPERTIES: ROBUSTNESS

THEOREM 1: If either 1,2 holds, then dL(&)/d@ depends only on
Information available at event times z;:

1. L(x,6,t) is independent of t over [5,(8), 7..,(8)] for all k
2. L(x,8,t) is only a function of x and for all t over [7(8), 7..1(8)]:

d@Lk_dafk_dafk_O
dt ox dt ox dtoé

[Yao and Cassandras, 2010]

d;—? = kzli(; T L () — 7 - L () + Mt}

IMPLICATION: - Performance sensitivities can be obtained from information
limited to event times, which is easily observed

- No need to track system in between events !
Christos G. Cassandras CISE - CODES Lab. - Boston University




IPA PROPERTIES : ROBUSTNESS

EXAMPLE WHERE THEOREM 1 APPLIES (simple tracking problem):

min E{ JIx() - g(¢)]dt} - Lo

OX

s.t. x =ax (t)+u,(6,)+w,(t) N 8—fk:a of, _ du,
k=1,...,N ox, ' 06, de,

NOTE: THEOREM 1 provides sufficient conditions only.
IPA still depends on info. limited to event times if

X = a, % (1) +u, (G, 1) + W, (t)

k=1,...,N

for “nice” functions u,(4,,1), e.g., b, &

Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA PROPERTIES: DECOMPOSABILITY

THEOREM 2: Suppose an endogenous event occurs at 7, with switching
function g(x, &).

If f (z;)=0,then X'(z,) is independent of f,_,.

If, in addition, g—g =0 then x'(r,)=0

IMPLICATION: Performance sensitivities are often reset to 0
=> sample path can be conveniently decomposed

Christos G. Cassandras C/SE - CODES Lab. - Boston University



IPA PROPERTIES

l EVENTS

X=f(x,u,w,t;0)

T+1

Evaluating X(t; &) requires full knowledge of w and f values (obvious)

dx(t; 9)

However,
do

may be independent of w and f values (NOT obvious)

It often depends only on: - event times 7,
- possibly f (z,_,)

Christos G. Cassandras CISE - CODES Lab. - Boston University



IPA PROPERTIES

In many cases:

- No need for a detailed model (captured by f,) to describe state behavior
In between events

- This explains why simple abstractions of a complex stochastic system
can be adequate to perform sensitivity analysis and optimization,
as long as event times are accurately observed and local system behavior
at these event times can also be measured.

- This Is true In abstractions of DES as HS since:
Common performance metrics (e.g., workload) satisfy THEOREM 1

Christos G. Cassandras C/SE - CODES Lab. - Boston University



THE CLASSIC SCHEDULING PROBLEM: cu-RULE

SERVICE RATES

X4(t) /

Hq

ARRIVAL M.

PROCESSES X, (1) . .
. 2 L,  CONTROLLER:
. N N}
—_—>

Xn(1)

= Problem: u(t)re?lln o EU Zc (t)dt] ¢, >0,i=1...,N.

= cp-rule: Always serve the non-empty queue with highest c;; value

NOTE: cpurule is an (almost) static control policy!

Christos G. Cassandras CODES Lab. - Boston University




OPTIMALITY OF cu-RULE

e Deterministic model
Smith, 1956

e Classical Queueing Theory:
- M/G/1 system - Cox and Smith,1961
- Discrete time, general arrivals, geometrically distributed service
- Baras et al., 1985; Buyukkoc et al., 1985
- Discrete time, service times with increasing/decreasing failure rates
— Hirayama et al., 1989

 Fluid models:
- Deterministic - Chen and Yao, 1993; Avram et al., 1995
- Fluid limits (heavy traffic) — Kingman, 1961; Whitt, 1968;
Harrison, 1968; Mieghem, 1995

Christos G. Cassandras CODES Lab. - Boston University



STOCHASTIC FLOW MODEL FOR SCHEDULING

o, (t) —— Capacity Constraint:
RANDON u, (t; ) N u,(t; 0) <

PROCESSES 7 y7A

“) ; 0<u (t;0)< i

X, (t) =0,u, (t) > &, (1)
a,(t)—u (t;6) otherwise

dt”

B min{e, (1), 1 0(1)} %, (t)=0
ul(t)_{ﬂﬂ(t) 4(0)>0 A

min{az(t),uz(l—“l(t)>} X (t) =0

Hy
u, (t
My i )) X,(t) >0
L H

Christos G. Cassandras CODES Lab. - Boston University

State dynamics: FEENRI0 {O

U, (t) =1




IPA FOR LINEAR HOLDING COSTS

= Sample function: (8] :Tl jOT [C,x, (1) +C, X, (1)]dt

THEOREM: If c,u; > C, 1, , then Q'(6) <0

<«—— Cl-rule is optimal

Proof: Use IPA CALCULUS to determine Q'(€) and show itis <0

NOTE: Result independent of inflow rate process «(t)
= Universality of cg-rule !

Kebarighotbi and Cassandras, J. DEDS, 2011

Christos G. Cassandras CODES Lab. - Boston University



CONCLUSIONS

Seek to combine TIME-DRIVEN with EVENT-DRIVEN
Control, Communication, and Optimization and exploit their
relative advantages and disadvantages

EVENT-DRIVEN Control in Distributed Wireless Systems:

- Act only when necessary (when specific events occur) ‘

EVENT-DRIVEN Sensitivity Analysis for Hybrid System

- Sensitivities depend mostly on events and are robust
with respect to noise

Christos G. Cassandras CODES Lab. - Boston University
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