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EVENT: 
g(STATE) ≤ 0 

EVENT-DRIVEN CONTROL:  Act only when needed (or on TIMEOUT) - not based on a clock 



OUTLINE  
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 Reasons for EVENT-DRIVEN Control, Communication, and 
Optimization 
 
 

 EVENT-DRIVEN Control in Distributed Wireless Systems 

 

 EVENT-DRIVEN Sensitivity Analysis for Hybrid Systems 



REASONS FOR EVENT-DRIVEN  
 MODELS, CONTROL, OPTIMIZATION 
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 Many systems are naturally Discrete Event Systems (DES)  
   (e.g., Internet)  
   → all state transitions are event-driven 
 
 
 Most of the rest are Hybrid Systems (HS) 
   → some state transitions are event-driven 
 
 
 Many systems are distributed  
   → components interact asynchronously (through events) 
 
 
 Time-driven sampling inherently inefficient (“open loop” sampling) 



REASONS FOR EVENT-DRIVEN  
MODELS, CONTROL, OPTIMIZATION 
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 Many systems are stochastic  
   → actions needed in response to random events 
 
 
 Event-driven methods provide significant advantages in 
   computation and estimation quality 
 
 
 System performance is often more sensitive to event-driven 
   components than to time-driven components 

 
 Many systems are wirelessly networked → energy constrained  
   → time-driven communication consumes significant energy 
        UNNECESSARILY! 
 



CYBER-PHYSICAL SYSTEMS 
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INTERNET 

CYBER 

PHYSICAL 

Data collection: 
relatively easy… 

Control: 
a challenge… 
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TIME-DRIVEN v EVENT-DRIVEN SYSTEMS 



SYNCHRONOUS v ASYNCHRONOUS BEHAVIOR 
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Wasted clock ticks 

More wasted clock ticks 

Even more wasted clock ticks 
… 

INCREASING TIME GRANULARITY 

Indistinguishable events 
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Time-driven (synchronous) implementation: 
- Sum repeatedly evaluated unnecessarily 
- When evaluation is actually needed, it is done at the wrong times ! 

TIME 

t1 t2 

SYNCHRONOUS v ASYNCHRONOUS COMPUTATION 
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MOTIVATIONAL PROBLEM: COVERAGE CONTROL 

Deploy sensors to maximize “event” detection probability  
 – unknown event locations 
 – event sources may be mobile 
 – sensors may be mobile  

Perceived event density (data sources) over given region (mission space) 
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• Meguerdichian et al, IEEE INFOCOM, 2001 
• Cortes et al, IEEE Trans. on Robotics and  
   Automation, 2004 
• Cassandras and Li, Eur. J. of Control, 2005 
• Ganguli et al, American Control Conf., 2006  
• Hussein and Stipanovic, American Control  
  Conf., 2007 
• Hokayem et al, American Control Conf., 2007 



OPTIMAL COVERAGE IN A MAZE 
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Zhong and Cassandras, 2008 

http://www.bu.edu/codes/research/distributed-control/ 



COVERAGE: PROBLEM FORMULATION 

 Sensing attenuation:  
 pi(x, si) monotonically decreasing in di(x) ≡ ||x - si|| 

  Data source at x emits signal with energy E 

  N mobile sensors, each located at si∈R2  

  Signal observed by sensor node i (at si ) 

 SENSING MODEL:  
]),(|by  Detected[),( iii sxAiPsxp ≡

 ( A(x) = data source emits at x ) 
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 Joint detection prob.  assuming sensor independence 
     ( s = [s1,…,sN] : node locations)                                                        

[ ]∏
=

−−=
N

i
ii sxpxP

1

),(11),( s

 OBJECTIVE: Determine locations s = [s1,…,sN] to 
maximize total Detection Probability: 

 ),()(max dxxPxR∫
Ω

s
s

COVERAGE: PROBLEM FORMULATION 
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Perceived event density 

Event sensing probability 



CONTINUED DISTRIBUTED COOPERATIVE SCHEME 

 Set 
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 Maximize H(s1,…,sN) by forcing nodes to move using 
gradient information: 
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Desired displacement = V·∆t 

Cassandras and Li, EJC, 2005 
Zhong and Cassandras, IEEE TAC, 2011 



CONTINUED DISTRIBUTED COOPERATIVE SCHEME 

… has to be autonomously evaluated by each node so 
as to determine how to move to next position: 

CONTINUED 

 Use truncated pi(x) ⇒ Ω replaced by node neighborhood Ωi 

 Discretize pi(x) using a local grid  
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DISTRIBUTED COOPERATIVE OPTIMIZATION 
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N system components  
(processors, agents, vehicles, nodes),  
one common objective: 



DISTRIBUTED COOPERATIVE OPTIMIZATION 
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i 

Controllable state  
si, i = 1,…,ni 

))(()()1( kdksks iiii sα+=+

Step Size 

Update Direction, usually  
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i requires knowledge of all s1,…,sN 

Inter-node communication 



SYNCHRONIZED (TIME-DRIVEN) COOPERATION 
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1 

2 

3 

COMMUNICATE + UPDATE 

Drawbacks: 
 Excessive communication (critical in wireless settings!) 
 Faster nodes have to wait for slower ones 
 Clock synchronization infeasible 
 Bandwidth limitations 
 Security risks 



ASYNCHRONOUS COOPERATION 
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1 

2 

3 

 Nodes not synchronized, delayed information used 

Bertsekas and Tsitsiklis, 1997 

Update frequency for each node 
is bounded  
 +  
technical conditions 

⇒ 
))(()()1( kdksks iiii sα+=+

converges 



ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION 
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2 

3 

UPDATE 
COMMUNICATE 

 UPDATE at i :         locally determined, arbitrary (possibly periodic) 
 COMMUNICATE from i :   only when absolutely necessary 

1 



WHEN SHOULD A NODE COMMUNICATE? 
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Node state at any time t :  xi(t) 

Node state at tk :        si(k) 

⇒ si(k) = xi(tk) 

j 

i 
tk 

)(kjτEstimate examples: 
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: node j state estimated by node i )(ksi
jAT UPDATE TIME tk  : 



WHEN SHOULD A NODE COMMUNICATE? 
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AT ANY TIME t : 

   If node i knows how j estimates its state, then it can evaluate  )(tx j
i

   Node i uses  
• its own true state, xi(t) 
• the estimate that j uses,  )(tx j

i

… and evaluates an ERROR FUNCTION ( ))(),( txtxg j
ii

Error Function examples: 21
)()(     ,)()( txtxtxtx j

ii
j

ii −−

           : node i state estimated by node j )(tx j
i
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i i 
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)(txi

δi 

WHEN SHOULD A NODE COMMUNICATE? 

Node i communicates its state to node j only when it detects that  
its true state xi(t) deviates from  j’ estimate of it  
so that   

)(tx j
i

( ) i
j

ii txtxg δ≥)(),(

( ))(),( txtxg j
iiCompare ERROR FUNCTION             to THRESHOLD δi 

⇒ Event-Driven Control 
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CONVERGENCE  

Asynchronous distributed state update process at each i: 
))(()()1( kdksks i

iii s⋅+=+ α Estimates of other nodes, 
evaluated by node i 

THEOREM: Under certain conditions, there exist positive constants 
        α and Kδ such that 
 
 

0))((lim =∇
∞→

kH
k

s

INTERPRETATION:  
 Event-driven cooperation achievable with 
 minimal communication requirements ⇒ energy savings 

Zhong and Cassandras, IEEE TAC, 2010 
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COONVERGENCE WHEN DELAYS ARE PRESENT 

Red curve:

Black curve:

ij
0τ t

0

( )kiδ

( )j
ii xxg ~,

( )j
ii xxg ,

ij
3τij

1τ ij
2τ ij

1σ ij
2σ ij

3σ ij
4σij

4τ

( )j
ii xxg ,

( )kiδ

0
tij

3τij
2τij

1τij
0τ

Error function trajectory with 
NO DELAY 

DELAY 



  Christos G. Cassandras    CODES Lab. - Boston University 
 

COONVERGENCE WHEN DELAYS ARE PRESENT 

ASSUMPTION: There exists a non-negative integer D such 
that if a message is sent before tk-D from node i to node j, it 
will be received before tk. 
INTERPRETATION: at most D state update events can occur between a node 
sending a message and all destination nodes receiving this message. 

Add a boundedness assumption: 

THEOREM: Under certain conditions, there exist positive constants 
         α and Kδ such that 
 
 

0))((lim =∇
∞→

kH
k

s

NOTE: The requirements on α and Kδ depend on D and they are tighter. 

Zhong and Cassandras, IEEE TAC, 2010 



SYNCHRONOUS v ASYNCHRONOUS 
   OPTIMAL COVERAGE PERFORMANCE 
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SYNCHRONOUS v ASYNCHRONOUS: 
   No. of communication events 
   for a deployment problem with obstacles 

SYNCHRONOUS v ASYNCHRONOUS: 
   Achieving optimality 
   in a problem with obstacles 

Energy savings + Extended lifetime 



DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH 
OBSTACLES – SIMULATED AND REAL 
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DEMO: REACTING TO EVENT DETECTION 

Important to note: 

There is no external 
control causing this 
behavior. Algorithm 
includes tracking 
functionality 
automatically 



BOSTON UNIVERSITY TEST BEDS 

SMARTS Kickoff Meeting   Christos G. Cassandras    CISE - CODES Lab. - Boston University 
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REAL-TIME STOCHASTIC OPTIMIZATION 

CONTROL/DECISION 
(Parameterized by θ) SYSTEM PERFORMANCE 

NOISE 
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)]([ θLE

)]([max θ
θ

LE
Θ∈

GOAL: 

L(θ) GRADIENT 
ESTIMATOR 

)(1 nnnn L θηθθ ∇+=+

)(θL∇ x(t) 

DIFFICULTIES:  - E[L(θ)] NOT available in closed form 
 -       not easy to evaluate 
 -         may not be a good estimate of  

)(θL∇
)(θL∇ )]([ θLE∇



REAL-TIME STOCHASTIC OPTIMIZATION FOR DES: 
INFINITESIMAL PERTURBATION ANALYSIS (IPA)  

CONTROL/DECISION 
(Parameterized by θ) 

Discrete Event 
System (DES) 

PERFORMANCE 

L(θ) 
IPA 

NOISE 

)(1 nnnn L θηθθ ∇+=+

Sample path 

For many (but NOT all) DES: 
- Unbiased estimators 
- General distributions 
- Simple on-line implementation 

[Ho and Cao, 1991], [Glasserman, 1991], [Cassandras, 1993, 2008] 

)]([ θLE
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REAL-TIME STOCHASTIC OPTIMIZATION: 
HYBRID SYSTEMS 

CONTROL/DECISION 
(Parameterized by θ) 

HYBRID 
SYSTEM 

PERFORMANCE 

L(θ) 
IPA )(1 nnnn L θηθθ ∇+=+

A general framework for an IPA theory in Hybrid Systems? 

Sample path 
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Performance metric (objective function):  

PERFORMANCE OPTIMIZATION AND IPA 
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IPA goal:   
 - Obtain unbiased estimates of       , normally 

 - Then: 
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HYBRID AUTOMATA 
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HYBRID AUTOMATA  

Q: set of discrete states (modes)  
X: set of continuous states (normally Rn)  
E: set of events  
U: set of admissible controls 

),,,,,,,,,,( 00 xqguardInvfUEXQGh ρφ=

f : vector field,  
φ : discrete state transition function, 

XUXQf →××:
QEXQ →××:φ

Inv: set defining an invariant condition (domain),   
guard: set defining a guard condition,  
ρ : reset function,  

q0: initial discrete state 
x0: initial continuous state 

XQInv ×⊆
XQQguard ××⊆

XEXQQ →×××:ρ



HYBRID AUTOMATA 
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HYBRID AUTOMATA  
Unreliable machine with timeouts 
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x(t) : physical state of part in machine 
τ(t): clock 

α : START, β : STOP, γ : REPAIR 

Invariant 

Guard 
Reset 



 
 
 
 
 
 

THE IPA CALCULUS 
 
 
 
 
 
 
 



IPA: THREE FUNDAMENTAL EQUATIONS 

1. Continuity at events:             
 

      Take d/dθ : 

)()( −+ = kk xx ττ
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If no continuity, use reset condition ⇒ 
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System dynamics over (τk(θ), τk+1(θ)]:  ),,( txfx k θ=
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NOTATION: 



IPA: THREE FUNDAMENTAL EQUATIONS 

Solve                       over (τk(θ), τk+1(θ)]:  
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initial condition from 1 above  
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2.   Take d/dθ of system dynamics         over (τk(θ), τk+1(θ)]:  ),,( txfx k θ=

θ∂
∂

+
∂

∂
=

)()(')()(' tftx
x
tf

dt
tdx kk

NOTE: If there are no events (pure time-driven system), 
 IPA reduces to this equation 



3. Get     depending on the event type: 

IPA: THREE FUNDAMENTAL EQUATIONS 

kτ ′

- Exogenous event: By definition, 
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Ignoring resets and induced events:  

IPA: THREE FUNDAMENTAL EQUATIONS 
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2. 
 
 

3.  
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Cassandras et al, Europ. J. Control, 2010 



IPA PROPERTIES 

Back to performance metric:  ( ) ∑ ∫
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between event times 
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IPA PROPERTIES: ROBUSTNESS 

THEOREM 1: If either 1,2 holds, then dL(θ)/dθ  depends only on 
information available at event times τk: 
 
1. L(x,θ,t) is independent of t over [τk(θ), τk+1(θ)] for all k 

2. L(x,θ,t) is only a function of x and for all t over [τk(θ), τk+1(θ)]: 
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x
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x
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IMPLICATION:  - Performance sensitivities can be obtained from information 
    limited to event times, which is easily observed  
  - No need to track system in between events ! 
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[Yao and Cassandras, 2010] 



IPA PROPERTIES : ROBUSTNESS 

EXAMPLE WHERE THEOREM 1 APPLIES (simple tracking problem):  
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NOTE:  THEOREM 1 provides sufficient conditions only.  
 IPA still depends on info. limited to event times if 
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IPA PROPERTIES: DECOMPOSABILITY 

THEOREM 2: Suppose an endogenous event occurs at τk with switching 
function g(x,θ).  
If             , then          is independent of  fk−1. 

If, in addition,    then   
 

IMPLICATION:  Performance sensitivities are often reset to 0  
    ⇒ sample path can be conveniently decomposed 
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IPA PROPERTIES 

EVENTS 

Evaluating         requires full knowledge of w and f values (obvious)  );( θtx

However,            may be independent of w and f values (NOT obvious) 
θ

θ
d
tdx );(

It often depends only on:   - event times τk  
    - possibly  )( 1

−
+kf τ
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IPA PROPERTIES 

- No need for a detailed model (captured by fk) to describe state behavior 
  in between events 
 
- This explains why simple abstractions of a complex stochastic system  
  can be adequate to perform sensitivity analysis and optimization,  
  as long as event times are accurately observed and local system behavior  
  at these event times can also be measured. 
 
- This is true in abstractions of DES as HS since: 
  Common performance metrics (e.g., workload) satisfy THEOREM 1 

In many cases: 
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THE CLASSIC SCHEDULING PROBLEM: cµ-RULE 
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 Problem:  
     

 
 cµ-rule:  Always serve the non-empty queue with highest ciµi value 
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NOTE: cµ rule is an (almost) static control policy! 



OPTIMALITY OF cµ-RULE  
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• Deterministic model 
    Smith, 1956 
 

• Classical Queueing Theory:      
   - M/G/1 system - Cox and Smith,1961 
   - Discrete time, general arrivals, geometrically distributed service 
 - Baras et al., 1985; Buyukkoc et al., 1985 
   - Discrete time, service times with increasing/decreasing failure rates 
 – Hirayama et al., 1989 
 

• Fluid models:      
   - Deterministic - Chen and  Yao, 1993; Avram et al., 1995 
   - Fluid limits (heavy traffic) – Kingman, 1961; Whitt, 1968;  
     Harrison, 1968;  Mieghem, 1995 



STOCHASTIC FLOW MODEL FOR SCHEDULING 
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IPA FOR LINEAR HOLDING COSTS 
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NOTE: Result independent of inflow rate process αn(t)  
 ⇒ Universality of cµ-rule ! 
  

THEOREM: If c1µ1 > c2µ2 , then  0)( <′ θQ
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Kebarighotbi and Cassandras, J. DEDS, 2011 

Proof: Use IPA CALCULUS to determine        and show it is < 0  )(θQ′



CONCLUSIONS  
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 Seek to combine TIME-DRIVEN with EVENT-DRIVEN 
Control, Communication, and Optimization and exploit their 
relative advantages and disadvantages 
 

 EVENT-DRIVEN Control in Distributed Wireless Systems: 

- Act only when necessary (when specific events occur) 

 EVENT-DRIVEN Sensitivity Analysis for Hybrid System  

 - Sensitivities depend mostly on events and are robust  
   with respect to noise 



THANK 
YOU 
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