

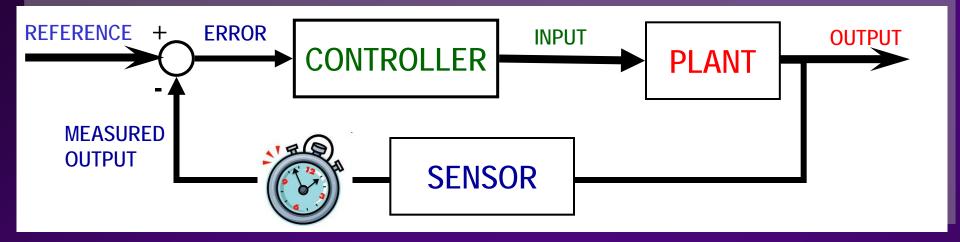
EVENT-DRIVEN CONTROL, COMMUNICATION, AND OPTIMIZATION

C. G. Cassandras

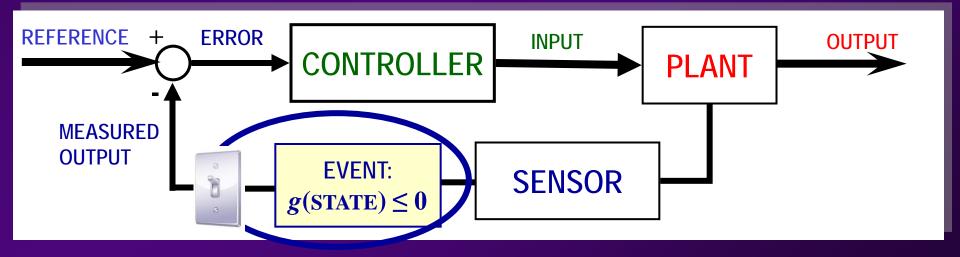
Division of Systems Engineering and Dept. of Electrical and Computer Engineering and Center for Information and Systems Engineering Boston University

Christos G. Cassandras — CODES Lab. - Boston University

TIME-DRIVEN v EVENT-DRIVEN CONTROL



EVENT-DRIVEN CONTROL: Act only when needed (or on TIMEOUT) - not based on a clock



Christos G. Cassandras

OUTLINE

Reasons for EVENT-DRIVEN Control, Communication, and Optimization

EVENT-DRIVEN Control in Distributed Wireless Systems

EVENT-DRIVEN Sensitivity Analysis for Hybrid Systems

Christos G. Cassandras

REASONS FOR EVENT-DRIVEN MODELS, CONTROL, OPTIMIZATION

- Many systems are naturally Discrete Event Systems (DES) (e.g., Internet)
 - \rightarrow all state transitions are event-driven
- Most of the rest are Hybrid Systems (HS) \rightarrow some state transitions are event-driven
- Many systems are distributed

 → components interact asynchronously (through events)
- Time-driven sampling inherently inefficient ("open loop" sampling)

REASONS FOR *EVENT-DRIVEN* MODELS, CONTROL, OPTIMIZATION

Many systems are stochastic

 \rightarrow actions needed in response to random events

Event-driven methods provide significant advantages in computation and estimation quality

System performance is often more sensitive to event-driven components than to time-driven components

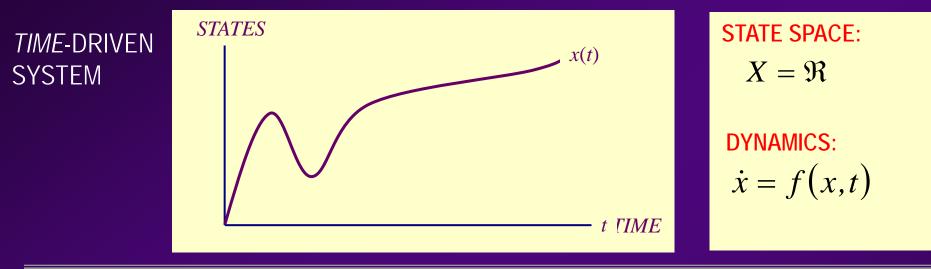
 Many systems are wirelessly networked → energy constrained
 → time-driven communication consumes significant energy UNNECESSARILY!

CYBER-PHYSICAL SYSTEMS

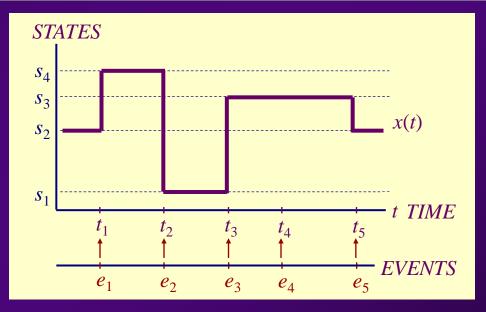
Christos G. Cassandras

CISE - CODES Lab. - Boston University

TIME-DRIVEN v EVENT-DRIVEN SYSTEMS



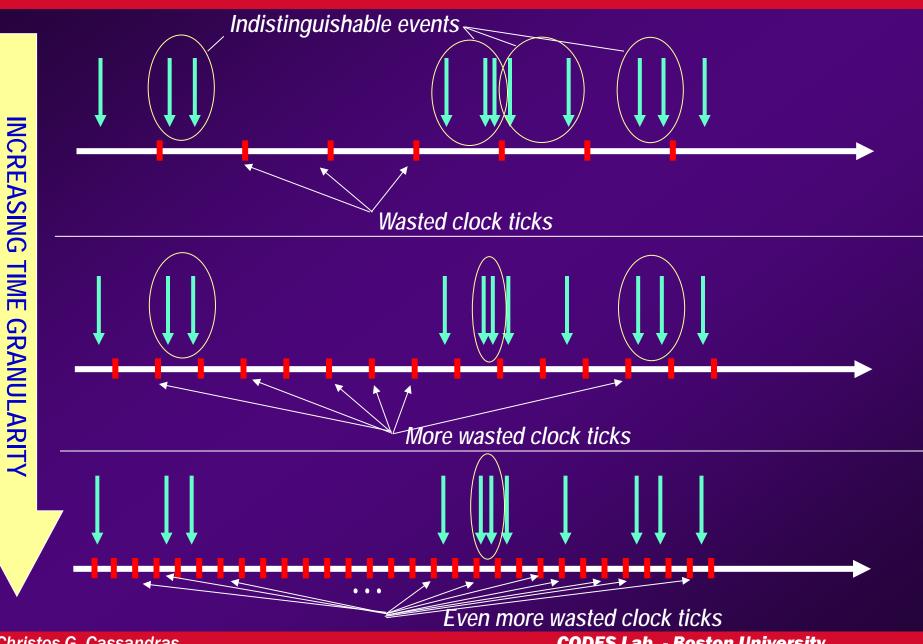
EVENT-DRIVEN SYSTEM



STATE SPACE: $X = \{s_1, s_2, s_3, s_4\}$ DYNAMICS: x' = f(x, e)

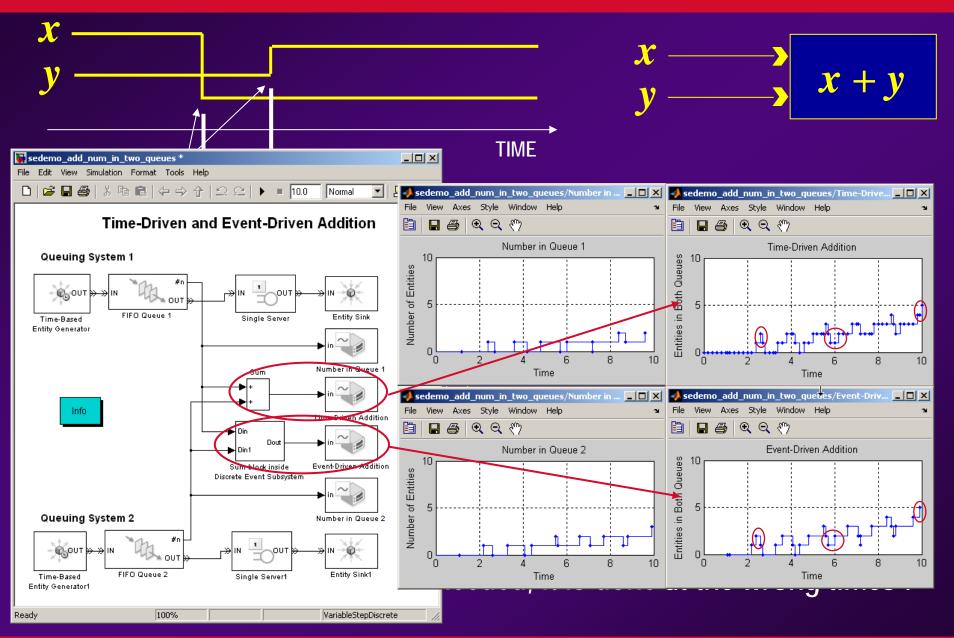
Christos G. Cassandras

SYNCHRONOUS v ASYNCHRONOUS BEHAVIOR



Christos G. Cassandras

SYNCHRONOUS v ASYNCHRONOUS COMPUTATION



Christos G. Cassandras

SELECTED REFERENCES - EVENT-DRIVEN CONTROL, COMMUNICATION, ESTIMATION, OPTIMIZATION

Astrom, K.J., and B. M. Bernhardsson, "Comparison of Riemann and Lebesgue sampling for first order stochastic systems," *Proc. 41st Conf. Decision and Control*, pp. 2011–2016, 2002.
T. Shima, S. Rasmussen, and P. Chandler, "UAV Team Decision and Control using Efficient Collaborative Estimation," *ASME J. of Dynamic Systems, Measurement, and Control*, vol. 129, no. 5, pp. 609–619, 2007.

- Heemels, W. P. M. H., J. H. Sandee, and P. P. J. van den Bosch, "Analysis of event-driven controllers for linear systems," *Intl. J. Control*, 81, pp. 571–590, 2008.

- P. Tabuada, "Event-triggered real-time scheduling of stabilizing control tasks," *IEEE Trans. Autom. Control*, vol. 52, pp. 1680–1685, 2007.

- J. H. Sandee, W. P. M. H. Heemels, S. B. F. Hulsenboom, and P. P. J. van den Bosch, "Analysis and experimental validation of a sensor-based event-driven controller," *Proc. American Control Conf.*, pp. 2867–2874, 2007.

- J. Lunze and D. Lehmann, "A state-feedback approach to event-based control," *Automatica*, 46, pp. 211–215, 2010.

- P. Wan and M. D. Lemmon, "Event triggered distributed optimization in sensor networks," *Proc. of 8th ACM/IEEE Intl. Conf. on Information Processing in Sensor Networks*, 2009.
- Zhong, M., and Cassandras, C.G., "Asynchronous Distributed Optimization with Event-Driven Communication", *IEEE Trans. on Automatic Control*, AC-55, 12, pp. 2735-2750, 2010.

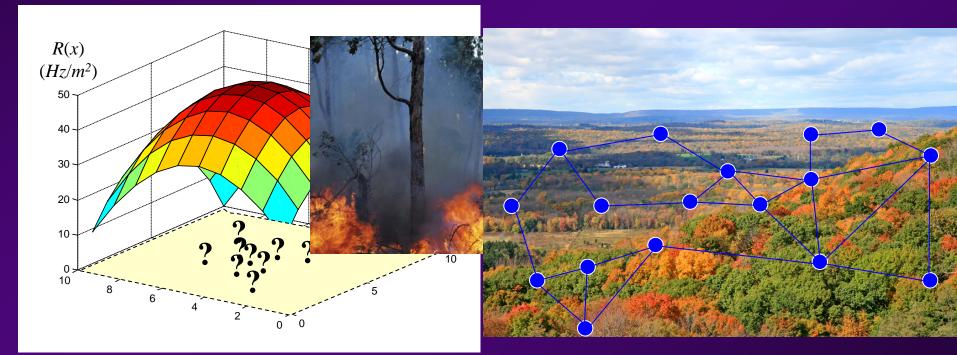
Christos G. Cassandras

EVENT-DRIVEN CONTROL IN DISTRIBUTED **(USUALLY WIRELESS)** SYSTEMS

MOTIVATIONAL PROBLEM: COVERAGE CONTROL

Deploy sensors to maximize "event" detection probability

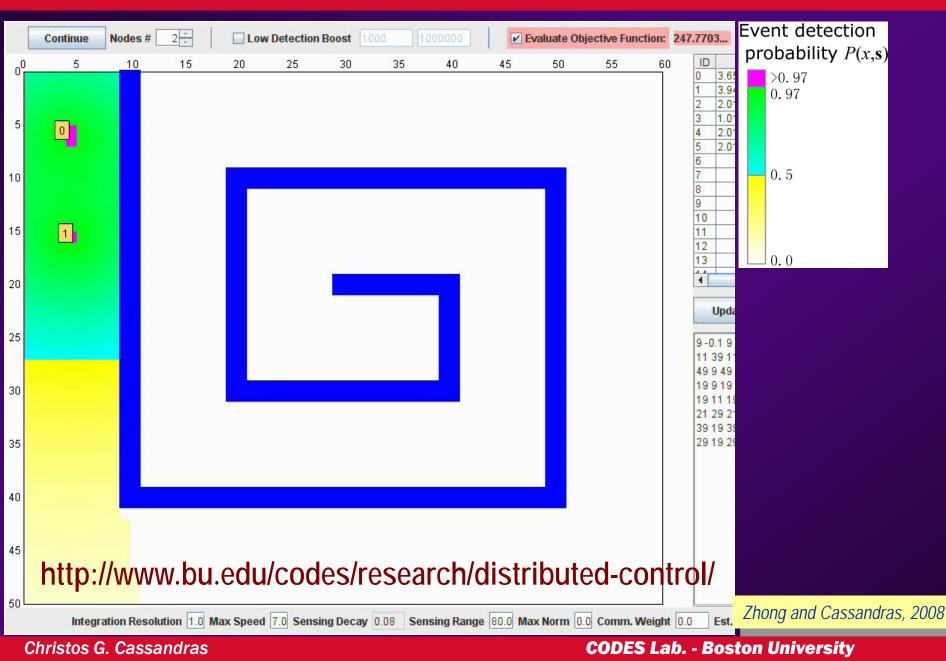
- unknown event locations
- event sources may be mobile
- sensors may be mobile



Perceived event density (data sources) over given region (mission space)

Christos G. Cassandras

OPTIMAL COVERAGE IN A MAZE

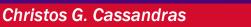


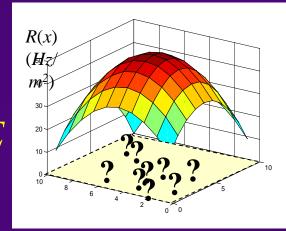
COVERAGE: PROBLEM FORMULATION

- N mobile sensors, each located at $s_i \in \mathbb{R}^2$
- Data source at x emits signal with energy E
- Signal observed by sensor node *i* (at *s_i*)
- SENSING MODEL:

 $p_i(x, s_i) \equiv P[\text{Detected by } i | A(x), s_i]$ (A(x) = data source emits at x)

Sensing attenuation: $p_i(x, s_i)$ monotonically decreasing in $d_i(x) \equiv ||x - s_i||$





COVERAGE: PROBLEM FORMULATION

- Joint detection prob. assuming sensor independence $(s = [s_1, ..., s_N]$: node locations)

$$P(x, \mathbf{s}) = 1 - \prod_{i=1}^{N} \left[1 - p_i(x, s_i) \right]$$

• OBJECTIVE: Determine locations s = [s₁,...,s_N] to maximize total *Detection Probability*:

$$\max_{\mathbf{s}} \int_{\Omega} R(x) P(x, \mathbf{s}) dx$$

Perceived event density

Christos G. Cassandras

DISTRIBUTED COOPERATIVE SCHEME

Set

$$H(s_1, \dots, s_N) = \int_{\Omega} R(x) \left\{ 1 - \prod_{i=1}^N \left[1 - p_i(x) \right] \right\} dx$$

• Maximize $H(s_1,...,s_N)$ by forcing nodes to move using gradient information:

$$\frac{\partial H}{\partial s_k} = \int_{\Omega} R(x) \prod_{i=1, i \neq k}^{N} \left[1 - p_i(x) \right] \frac{\partial p_k(x)}{\partial d_k(x)} \frac{s_k - x}{d_k(x)} dx$$

$$s_i^{k+1} = s_i^k + \beta_k \frac{\partial H}{\partial s_i^k}$$

Desired displacement = $V \cdot \Delta t$

Cassandras and Li, EJC, 2005 Zhong and Cassandras, IEEE TAC, 2011

Christos G. Cassandras

DISTRIBUTED COOPERATIVE SCHEME

CONTINUED

$$\frac{\partial H}{\partial s_k} = \int_{\Omega} R(x) \prod_{i=1, i \neq k}^{N} \left[1 - p_i(x) \right] \frac{\partial p_k(x)}{\partial d_k(x)} \frac{s_k - x}{d_k(x)} dx$$

... has to be autonomously evaluated by each node so as to determine how to move to next position:

$$s_i^{k+1} = s_i^k + \beta_k \frac{\partial H}{\partial s_i^k}$$

• Use truncated $p_i(x) \Rightarrow \Omega$ replaced by node neighborhood Ω_i

> Discretize $p_i(x)$ using a local grid

DISTRIBUTED COOPERATIVE OPTIMIZATION

N system components (processors, agents, vehicles, nodes), one common objective:

$$\min_{s_1,\ldots,s_N} H(s_1,\ldots,s_N)$$

s.t. constraints on each s_i

 $\min_{s_1} H(s_1,\ldots,s_N)$

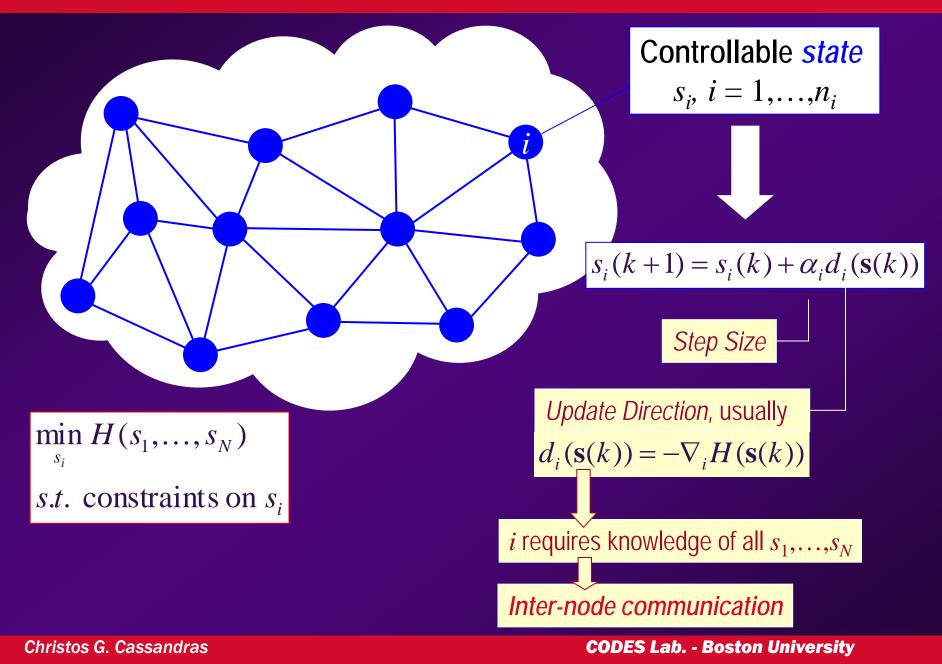
s.t. constraints on
$$s_1$$

$$\min_{s_N} H(s_1, \dots, s_N)$$

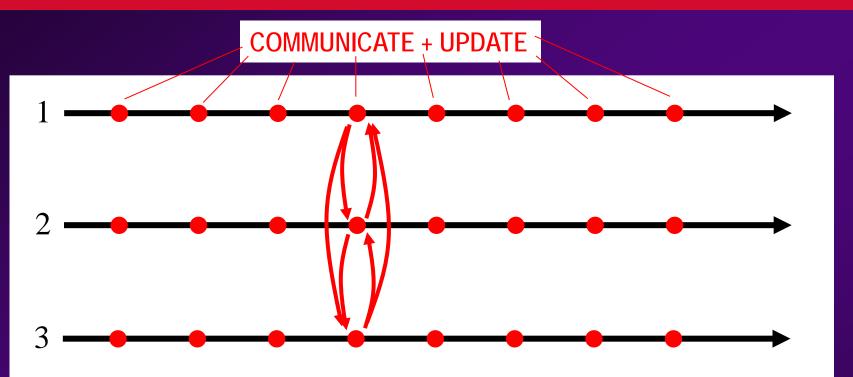
s.t. constraints on s_N

Christos G. Cassandras

DISTRIBUTED COOPERATIVE OPTIMIZATION



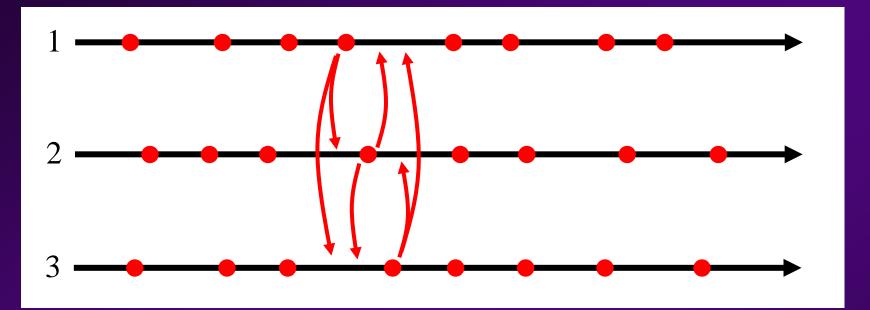
SYNCHRONIZED (TIME-DRIVEN) COOPERATION



Drawbacks:

- Excessive communication (critical in wireless settings!)
- Faster nodes have to wait for slower ones
- Clock synchronization infeasible
- Bandwidth limitations
- Security risks

ASYNCHRONOUS COOPERATION



Nodes not synchronized, delayed information used

Update frequency for each node is bounded

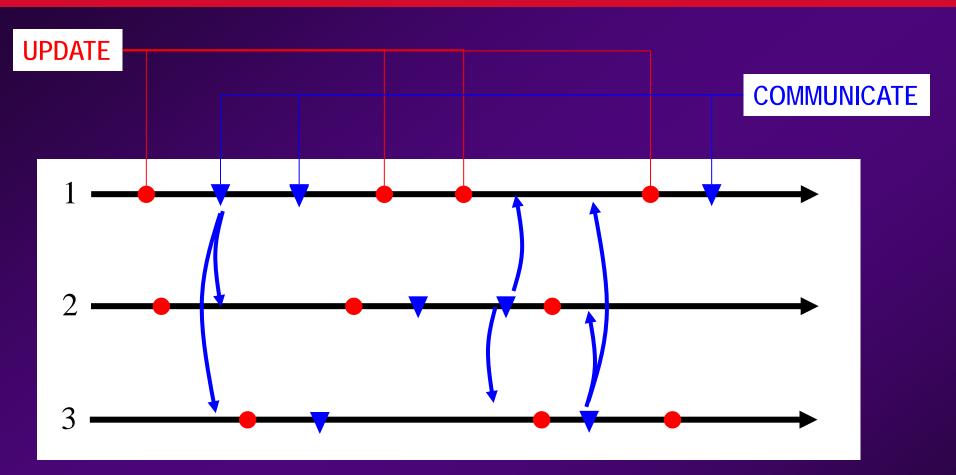
technical conditions

 $\Rightarrow \frac{s_i(k+1) = s_i(k) + \alpha_i d_i(\mathbf{s}(k))}{\text{converges}}$

Bertsekas and Tsitsiklis, 1997

Christos G. Cassandras

ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION



UPDATE at *i* : locally determined, arbitrary (possibly periodic)
 COMMUNICATE from *i* : only when absolutely necessary

Christos G. Cassandras

WHEN SHOULD A NODE COMMUNICATE?

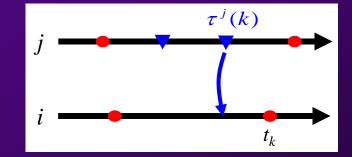
Node state at any time $t : x_i(t)$ Node state at t_k : $s_i(k) \Rightarrow s_i(k) = x_i(t_k)$

AT UPDATE TIME t_k : $s_j^i(k)$: node j state estimated by node i

Estimate examples:

 $\Rightarrow s_j^i(k) = x_j(\tau^j(k))$ Mos

Most recent value



$$\Rightarrow s_j^i(k) = x_j(\tau^j(k)) + \frac{t_k - \tau^j(k)}{\Delta_j} \cdot \alpha_i \cdot d_j(x_j(\tau^j(k)))$$
 Linear prediction

Christos G. Cassandras

WHEN SHOULD A NODE COMMUNICATE?

AT ANY TIME *t* :

- $x_i^j(t)$: node *i* state estimated by node *j*
- If node *i* knows how *j* estimates its state, then it can evaluate $x_i^j(t)$
- Node *i* uses
 - its own true state, $x_i(t)$
 - the estimate that j uses, $x_i^j(t)$

... and evaluates an ERROR FUNCTION $g(x_i(t), x_i^j(t))$

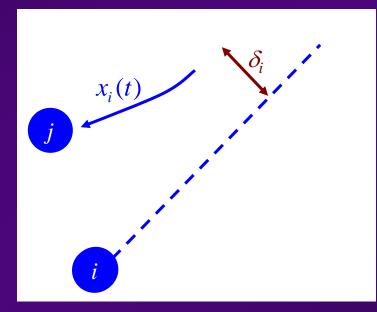
Error Function examples:
$$\|x_i(t) - x_i^j(t)\|_1$$
, $\|x_i(t) - x_i^j(t)\|_2$

Christos G. Cassandras

WHEN SHOULD A NODE COMMUNICATE?

Compare ERROR FUNCTION $g(x_i(t), x_i^j(t))$ to THRESHOLD δ_i

Node *i* communicates its state to node *j* only when it detects that its *true state* $x_i(t)$ deviates from *j*' *estimate of it* $x_i^j(t)$ so that $g(x_i(t), x_i^j(t)) \ge \delta_i$



⇒ *Event-Driven* Control

Christos G. Cassandras

CONVERGENCE

Asynchronous distributed state update process at each *i*:

$$s_i(k+1) = s_i(k) + \alpha \cdot d_i(\mathbf{s}^i(k))$$

Estimates of other nodes, evaluated by node *i*

$$\delta_i(k) = \begin{cases} K_{\delta} \| d_i(\mathbf{s}^i(k)) \| & \text{if } k \text{ sends update} \\ \delta_i(k-1) & \text{otherwise} \end{cases}$$

THEOREM: Under certain conditions, there exist positive constants α and K_{δ} such that

 $\lim_{k\to\infty}\nabla H(\mathbf{s}(k))=0$

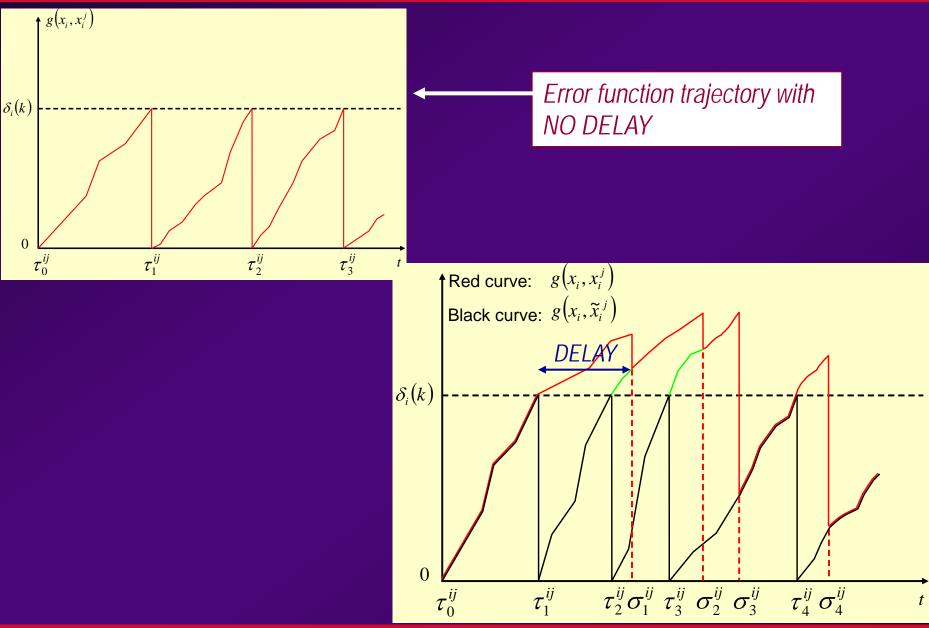
Zhong and Cassandras, IEEE TAC, 2010

INTERPRETATION:

Event-driven cooperation achievable with minimal communication requirements \Rightarrow *energy savings*

Christos G. Cassandras

COONVERGENCE WHEN DELAYS ARE PRESENT



Christos G. Cassandras

COONVERGENCE WHEN DELAYS ARE PRESENT

Add a boundedness assumption:

ASSUMPTION: There exists a non-negative integer *D* such that if a message is sent before t_{k-D} from node *i* to node *j*, it will be received before t_k .

INTERPRETATION: at most **D** state update events can occur between a node sending a message and all destination nodes receiving this message.

THEOREM: Under certain conditions, there exist positive constants α and K_{δ} such that

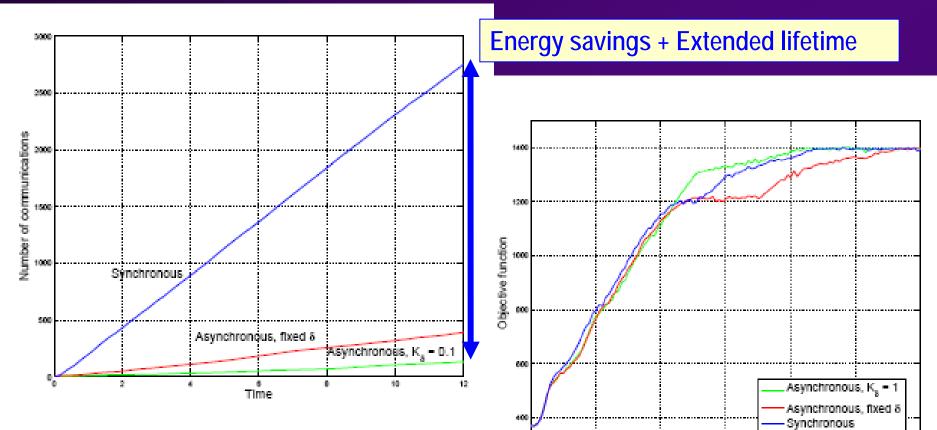
 $\lim_{k\to\infty}\nabla H(\mathbf{s}(k))=0$

NOTE: The requirements on α and K_{δ} depend on **D** and they are tighter.

Zhong and Cassandras, IEEE TAC, 2010

Christos G. Cassandras

SYNCHRONOUS v ASYNCHRONOUS OPTIMAL COVERAGE PERFORMANCE



SYNCHRONOUS v ASYNCHRONOUS:

No. of communication events for a deployment problem *with obstacles*

SYNCHRONOUS v ASYNCHRONOUS:

Time

10

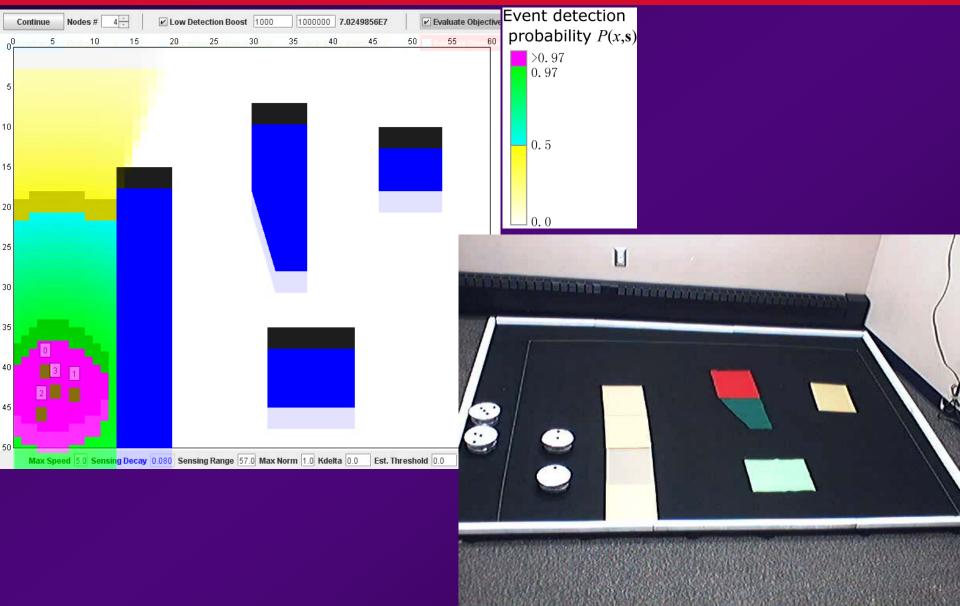
12

Achieving optimality in a problem *with obstacles*

 \mathbb{R}^{2}

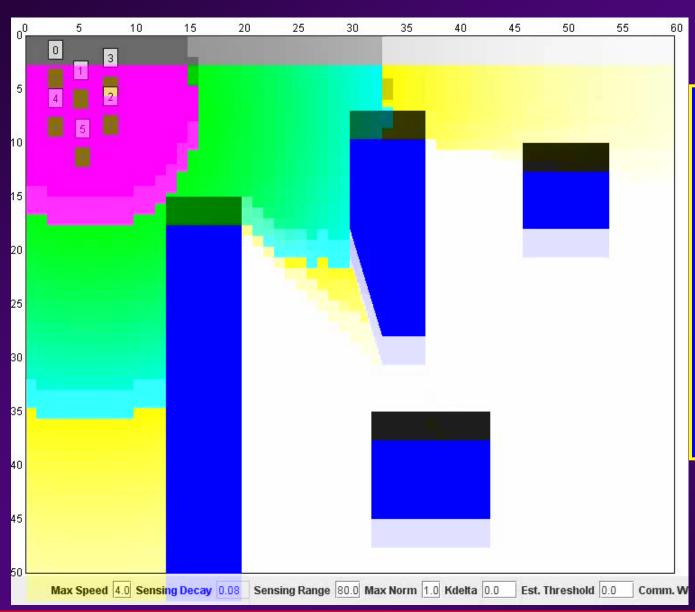
Christos G. Cassandras

DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH OBSTACLES – SIMULATED AND REAL



Christos G. Cassandras

DEMO: REACTING TO EVENT DETECTION

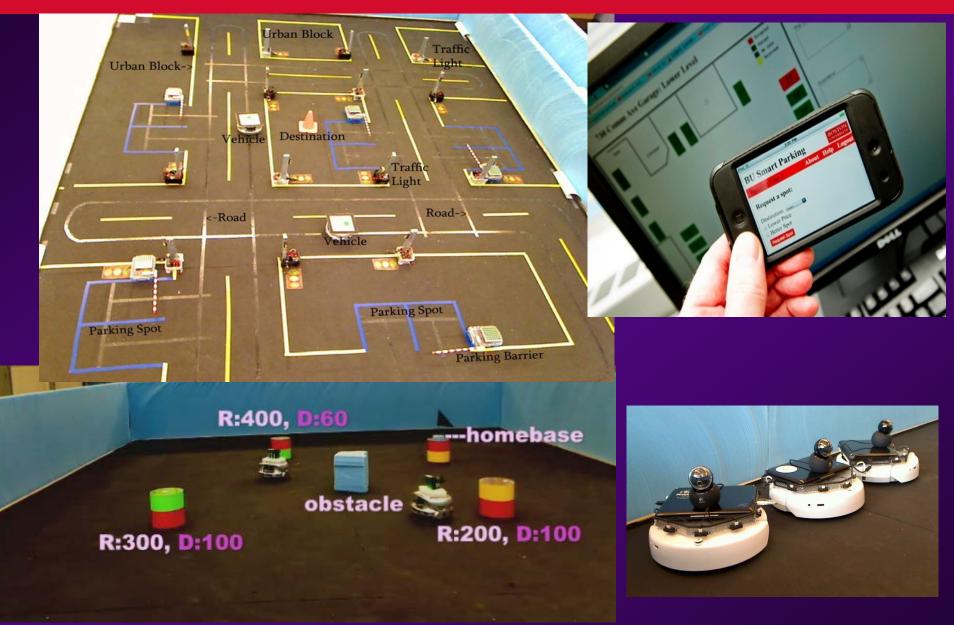


Important to note:

There is no external control causing this behavior. Algorithm includes tracking functionality automatically

Christos G. Cassandras

BOSTON UNIVERSITY TEST BEDS

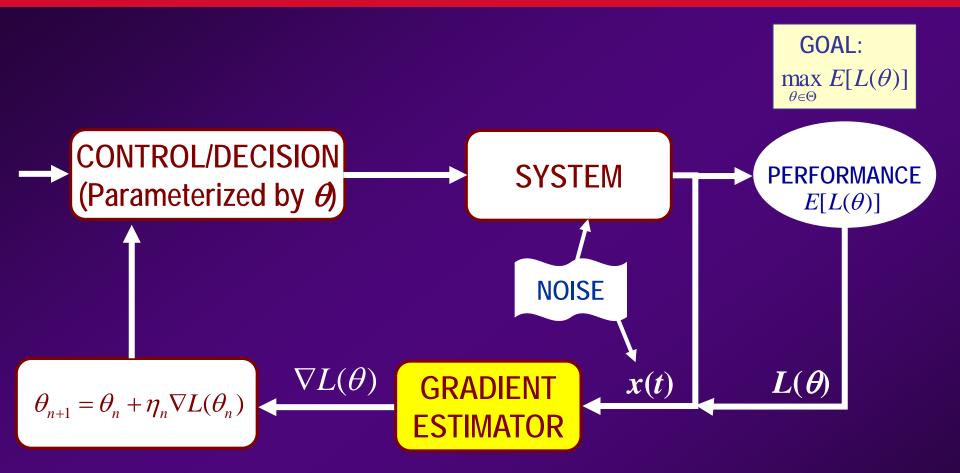


Christos G. Cassandras

CISE - CODES Lab. - Boston University

EVENT-DRIVEN SENSITIVITY ANALYSIS

REAL-TIME STOCHASTIC OPTIMIZATION



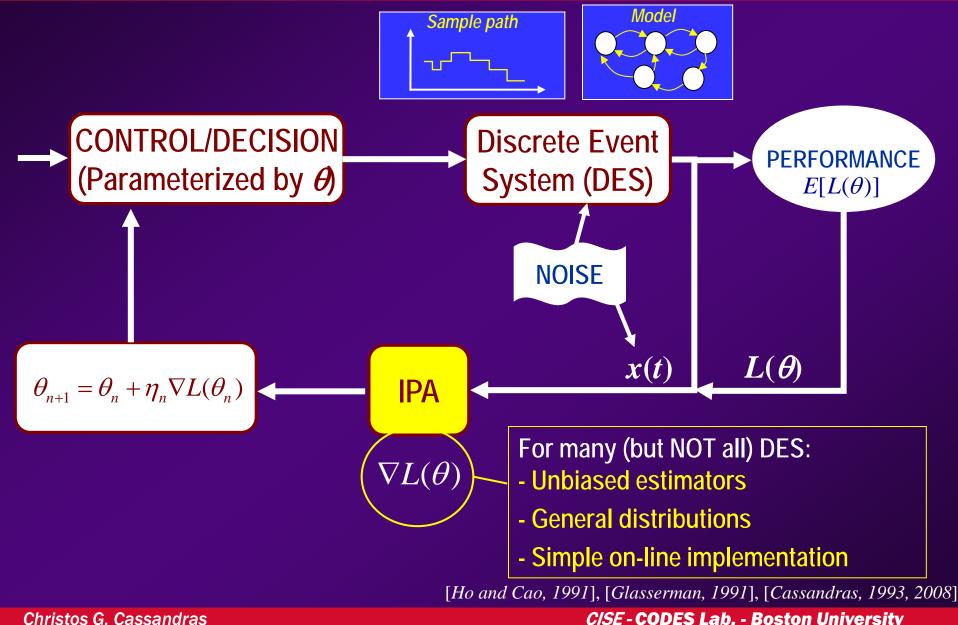
DIFFICULTIES: - $E[L(\theta)]$ NOT available in closed form

- $-\nabla L(\theta)$ not easy to evaluate
- $\nabla L(\theta)$ may not be a good estimate of $\nabla E[L(\theta)]$

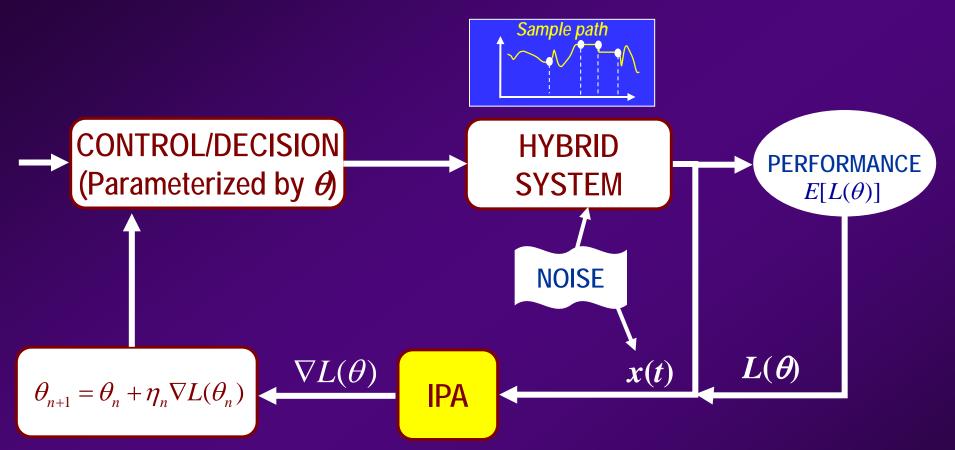
Christos G. Cassandras

CISE - CODES Lab. - Boston University

REAL-TIME STOCHASTIC OPTIMIZATION FOR DES: INFINITESIMAL PERTURBATION ANALYSIS (IPA)



REAL-TIME STOCHASTIC OPTIMIZATION: *HYBRID SYSTEMS*



A general framework for an IPA theory in Hybrid Systems?

Christos G. Cassandras

CISE - CODES Lab. - Boston University

PERFORMANCE OPTIMIZATION AND IPA

Performance metric (objective function):

$$J(\theta; x(\theta, 0), T) = E[L(\theta; x(\theta, 0), T)]$$
$$\bigcup$$
$$L(\theta) = \sum_{k=0}^{N} \int_{\tau_{k}}^{\tau_{k+1}} L_{k}(x, \theta, t) d$$

IPA goal: - Obtain unbiased estimates of $\frac{dJ(\theta; x(\theta, 0), T)}{d\theta}$, normally $\frac{dL(\theta)}{d\theta}$ - Then: $\theta_{n+1} = \theta_n + \eta_n \frac{dL(\theta_n)}{d\theta}$

ATION:
$$x'(t) = \frac{\partial x(\theta, t)}{\partial \theta}, \quad \tau'_k = \frac{\partial \tau_k(\theta)}{\partial \theta}$$

Christos G. Cassandras

NOT/

HYBRID AUTOMATA

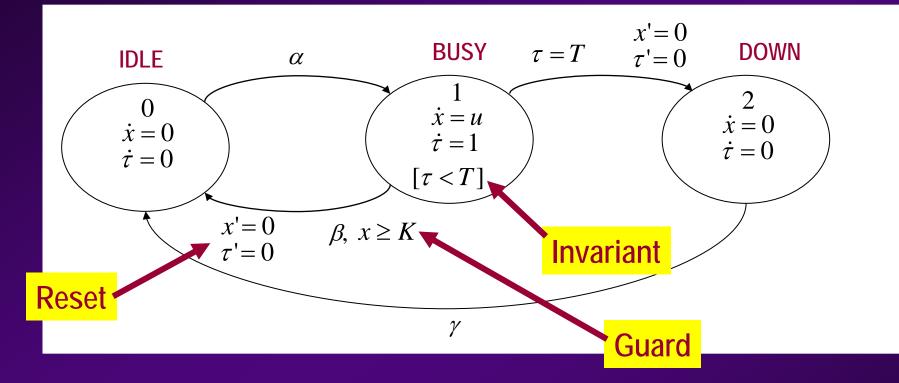
$$G_h = (Q, X, E, U, f, \phi, Inv, guard, \rho, q_0, \mathbf{x}_0)$$

- **Q**: set of discrete states (modes)
- *X*: set of continuous states (normally R^{*n*})
- *E*: set of events
- **U:** set of admissible controls
- f: vector field, $f: Q \times X \times U \to X$
- ϕ : discrete state transition function, $\phi: Q \times X \times E \to Q$
- *Inv*: set defining an invariant condition (domain), $Inv \subseteq Q \times X$
- *guard*: set defining a guard condition, $guard \subseteq Q \times Q \times X$
- ρ : reset function, $\rho: Q \times Q \times X \times E \to X$
- **q**₀: initial discrete state
- **x₀:** initial continuous state

Christos G. Cassandras

HYBRID AUTOMATA

Unreliable machine with timeouts



x(t) : physical state of part in machine $\tau(t)$: clock

α : START, β : STOP, γ : REPAIR

Christos G. Cassandras

THE IPA CALCULUS

System dynamics over
$$(\tau_k(\theta), \tau_{k+1}(\theta)]$$
: $\dot{x} = f_k(x, \theta, t)$

OTATION:
$$x'(t) = \frac{\partial x(\theta, t)}{\partial \theta}, \quad \tau'_k = \frac{\partial \tau_k(\theta)}{\partial \theta}$$

1. Continuity at events: $x(\tau_k^+) = x(\tau_k^-)$

Take $d/d\theta$:

$$x'(\tau_k^+) = x'(\tau_k^-) + [f_{k-1}(\tau_k^-) - f_k(\tau_k^+)]\tau'_k$$

If no continuity, use reset condition \Rightarrow

$$x'(\tau_k^+) = \frac{d\rho(q, q', x, \upsilon, \delta)}{d\theta}$$

Christos G. Cassandras

2. Take $d/d\theta$ of system dynamics $\dot{x} = f_k(x, \theta, t)$ over $(\tau_k(\theta), \tau_{k+1}(\theta)]$:

$$\frac{dx'(t)}{dt} = \frac{\partial f_k(t)}{\partial x} x'(t) + \frac{\partial f_k(t)}{\partial \theta}$$

Solve
$$\frac{dx'(t)}{dt} = \frac{\partial f_k(t)}{\partial x} x'(t) + \frac{\partial f_k(t)}{\partial \theta}$$
 over $(\tau_k(\theta), \tau_{k+1}(\theta)]$:

$$x'(t) = e^{\int_{\tau_k}^{t} \frac{\partial f_k(u)}{\partial x} du} \left[\int_{\tau_k}^{t} \frac{\partial f_k(v)}{\partial \theta} e^{-\int_{\tau_k}^{v} \frac{\partial f_k(u)}{\partial x} du} dv + x'(\tau_k^+) \right]$$

initial condition from 1 above

NOTE: If there are no events (pure time-driven system), IPA reduces to this equation

Christos G. Cassandras

- 3. Get τ'_k depending on the event type:
- Exogenous event: By definition, $\tau'_k = 0$
- Endogenous event: occurs when $g_k(x(\theta, \tau_k), \theta) = 0$

$$\tau'_{k} = -\left[\frac{\partial g}{\partial x}f_{k}(\tau_{k}^{-})\right]^{-1}\left(\frac{\partial g}{\partial \theta} + \frac{\partial g}{\partial x}x'(\tau_{k}^{-})\right)$$

- Induced events:

$$\tau'_{k} = -\left[\frac{\partial y_{k}(\tau_{k})}{\partial t}\right]^{-1} y'_{k}(\tau_{k}^{+})$$

Christos G. Cassandras

Ignoring resets and induced events:

1.
$$x'(\tau_k^+) = x'(\tau_k^-) + [f_{k-1}(\tau_k^-) - f_k(\tau_k^+)] \cdot \tau'_k$$

2.
$$x'(t) = e^{\int_{\tau_k}^{t} \frac{\partial f_k(u)}{\partial x} du} \left[\int_{\tau_k}^{t} \frac{\partial f_k(v)}{\partial \theta} e^{-\int_{\tau_k}^{v} \frac{\partial f_k(u)}{\partial x} du} dv + x'(\tau_k^+) \right]$$

3.
$$\tau'_{k} = 0$$
 or $\tau'_{k} = -\left[\frac{\partial g}{\partial x}f_{k}(\tau_{k}^{-})\right]^{-1}\left(\frac{\partial g}{\partial \theta} + \frac{\partial g}{\partial x}x'(\tau_{k}^{-})\right)$

2

Recall:

$$x'(t) = \frac{\partial x(\theta, t)}{\partial \theta}$$

$$\tau'_{k} = \frac{\partial \tau_{k}(\theta)}{\partial \theta}$$

Cassandras et al, Europ. J. Control, 2010

Christos G. Cassandras

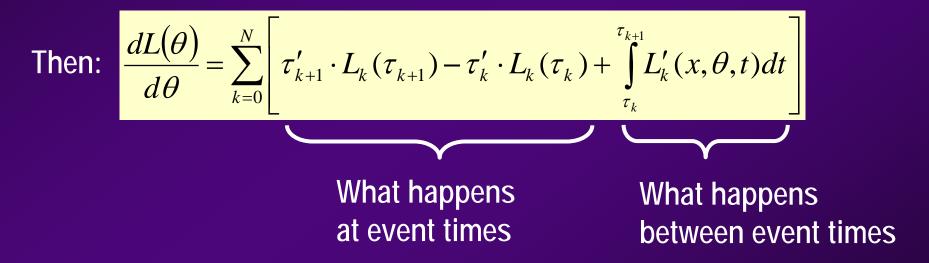
 $x'(\tau_k)$

IPA PROPERTIES

Back to performance metric:

$$L(\theta) = \sum_{k=0}^{N} \int_{\tau_k}^{\tau_{k+1}} L_k(x,\theta,t) dt$$

NOTATION:
$$L'_k(x,\theta,t) = \frac{\partial L_k(x,\theta,t)}{\partial \theta}$$



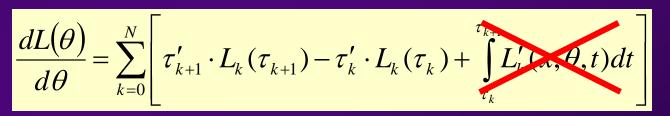
IPA PROPERTIES: *ROBUSTNESS*

THEOREM 1: If either 1,2 holds, then $dL(\theta)/d\theta$ depends only on information available at event times τ_k :

- 1. $L(x, \theta, t)$ is independent of t over $[\tau_k(\theta), \tau_{k+1}(\theta)]$ for all k
- 2. $L(x, \theta, t)$ is only a function of x and for all t over $[\tau_k(\theta), \tau_{k+1}(\theta)]$:

$$\frac{d}{dt}\frac{\partial L_k}{\partial x} = \frac{d}{dt}\frac{\partial f_k}{\partial x} = \frac{d}{dt}\frac{\partial f_k}{\partial \theta} = 0$$

[Yao and Cassandras, 2010]



 IMPLICATION: - Performance sensitivities can be obtained from information limited to event times, which is easily observed
 - No need to track system in between events !

Christos G. Cassandras

IPA PROPERTIES : ROBUSTNESS

EXAMPLE WHERE THEOREM 1 APPLIES (simple tracking problem):

$$\min_{\substack{\theta,\phi}} E\left[\int_{0}^{T} [x(t) - g(\phi)]dt\right] \qquad \Rightarrow \frac{\partial L}{\partial x} = 1$$

s.t. $\dot{x}_{k} = a_{k}x_{k}(t) + u_{k}(\theta_{k}) + w_{k}(t) \Rightarrow \frac{\partial f_{k}}{\partial x_{k}} = a_{k}, \quad \frac{\partial f_{k}}{\partial \theta_{k}} = \frac{du_{k}}{d\theta_{k}}$
 $k = 1, \dots, N$

NOTE: THEOREM 1 provides *sufficient* conditions only. IPA still depends on info. limited to event times if

$$\dot{x}_k = a_k x_k(t) + u_k(\theta_k, t) + w_k(t)$$

$$k = 1, \dots, N$$

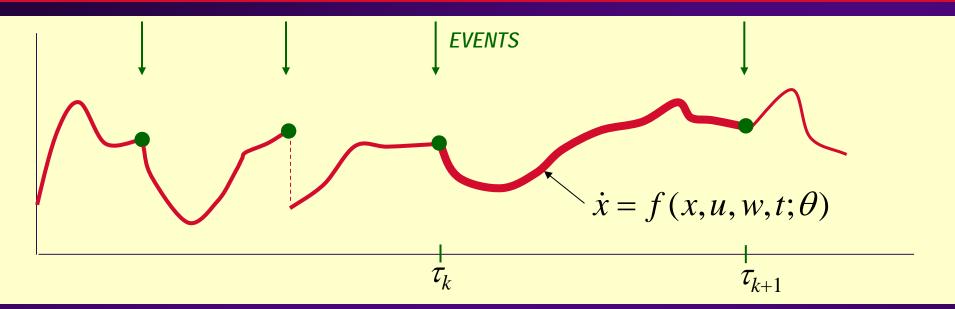
for "nice" functions $u_k(\theta_k, t)$, e.g., $b_k \theta t$

Christos G. Cassandras

THEOREM 2: Suppose an endogenous event occurs at τ_k with switching function $g(x, \theta)$. If $f_k(\tau_k^+) = 0$, then $x'(\tau_k^+)$ is independent of f_{k-1} . If, in addition, $\frac{dg}{d\theta} = 0$ then $x'(\tau_k^+) = 0$

IMPLICATION: Performance sensitivities are often reset to 0 ⇒ sample path can be conveniently decomposed

IPA PROPERTIES



Evaluating $x(t; \theta)$ requires full knowledge of w and f values (obvious)

However, $\frac{dx(t;\theta)}{d\theta}$ may be *independent* of *w* and *f* values (*NOT* obvious)

It often depends only on: - event times τ_k - possibly $f(\tau_{k+1}^-)$

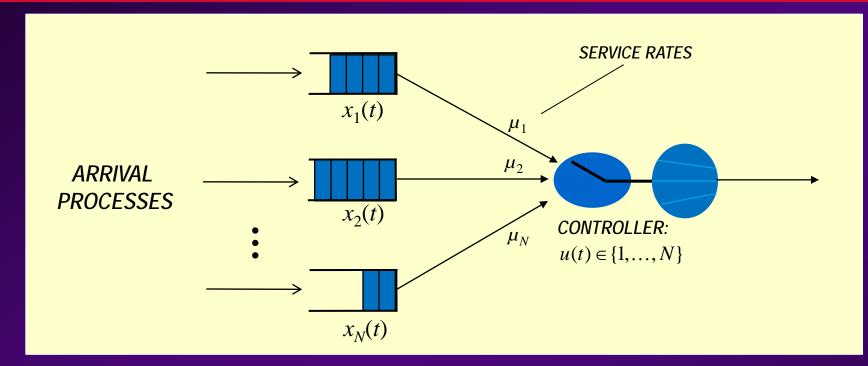
Christos G. Cassandras

IPA PROPERTIES

In many cases:

- *No need for a detailed model* (captured by f_k) to describe state behavior in between events
- This explains why simple abstractions of a complex stochastic system can be adequate to perform sensitivity analysis and optimization, as long as event times are accurately observed and local system behavior at these event times can also be measured.
- This is true in *abstractions of DES as HS* since:
 Common performance metrics (e.g., workload) satisfy THEOREM 1

THE CLASSIC SCHEDULING PROBLEM: cµ-RULE



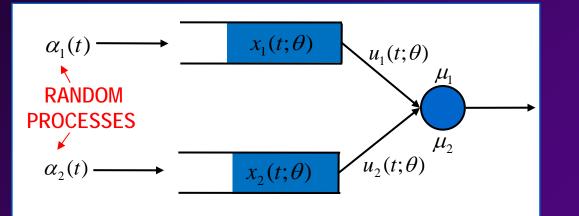
• Problem:
$$\min_{u(t)\in\{1,...,N\}} \frac{1}{T} E\left[\int_0^T \sum_{i=1}^N c_i x_i(t) dt\right], \quad c_i > 0, i = 1,...,N.$$

• $c\mu$ -rule: Always serve the non-empty queue with highest $c_i\mu_i$ value NOTE: $c\mu$ rule is an (almost) static control policy!

Christos G. Cassandras

- Deterministic model Smith, 1956
- Classical Queueing Theory:
 - M/G/1 system Cox and Smith, 1961
 - Discrete time, general arrivals, geometrically distributed service
 - Baras et al., 1985; Buyukkoc et al., 1985
 - Discrete time, service times with increasing/decreasing failure rates
 - Hirayama et al., 1989
- Fluid models:
 - Deterministic Chen and Yao, 1993; Avram et al., 1995
 - Fluid limits (heavy traffic) *Kingman*, 1961; *Whitt*, 1968; *Harrison*, 1968; *Mieghem*, 1995

STOCHASTIC FLOW MODEL FOR SCHEDULING



Capacity Constraint:

$$\frac{u_1(t;\theta)}{\mu_1} + \frac{u_2(t;\theta)}{\mu_2} \le 1$$

$$0 \le u_n(t;\theta) \le \mu_n$$

State dynamics:

$$f_{n}(t;\theta) = \frac{dx_{n}(t)}{dt^{+}} = \begin{cases} 0 & x_{n}(t) = 0, u_{n}(t) \ge \alpha_{n}(t) \\ \alpha_{n}(t) - u_{n}(t;\theta) & \text{otherwise} \end{cases}$$
$$u_{1}(t) = \begin{cases} \min\{\alpha_{1}(t), \mu_{1}\theta(t)\} & x_{1}(t) = 0 \\ \mu_{1}\theta(t) & x_{1}(t) > 0 & \theta(t) \in [0,1] \end{cases}$$
$$u_{2}(t) = \begin{cases} \min\{\alpha_{2}(t), \mu_{2}(1 - \frac{u_{1}(t)}{\mu_{1}})\} & x_{2}(t) = 0 \\ \mu_{2}(1 - \frac{u_{1}(t)}{\mu_{1}}) & x_{2}(t) > 0 \end{cases}$$

Christos G. Cassandras

IPA FOR LINEAR HOLDING COSTS

Sample function:

$$Q(\theta) = \frac{1}{T} \int_0^T [c_1 x_1(t) + c_2 x_2(t)] dt$$

THEOREM: If $c_1 \mu_1 > c_2 \mu_2$, then $Q'(\theta) < 0$

$$\theta^{*}(t) = \begin{cases} 1 & x_{1}(t) > 0 \\ \frac{\alpha_{1}(t)}{\mu_{1}} & x_{1}(t) = 0 \end{cases} \leftarrow c\mu$$
-rule is optimal

Proof: Use IPA CALCULUS to determine $Q'(\theta)$ and show it is < 0

NOTE: Result independent of inflow rate process $\alpha_n(t)$ \Rightarrow Universality of $c \mu$ -rule !

Kebarighotbi and Cassandras, J. DEDS, 2011

Christos G. Cassandras

CONCLUSIONS

Seek to combine TIME-DRIVEN with EVENT-DRIVEN Control, Communication, and Optimization and exploit their relative advantages and disadvantages

EVENT-DRIVEN Control in Distributed Wireless Systems:

- Act only when necessary (when specific events occur)

EVENT-DRIVEN Sensitivity Analysis for Hybrid System

- Sensitivities depend mostly on events and are robust with respect to noise

Christos G. Cassandras

